This form contains the measure information submitted by stewards. Blank fields indicate no information was provided. Attachments also may have been submitted and are provided to reviewers. The subcriteria and most of the footnotes from the evaluation criteria are provided in Word comments within the form and will appear if your cursor is over the highlighted area. Hyperlinks to the evaluation criteria and ratings are provided in each section.

TAP/Workgroup (if utilized): Complete all yellow highlighted areas of the form. Evaluate the extent to which each subcriterion is met. Based on your evaluation, summarize the strengths and weaknesses in each section.

Note: If there is no TAP or workgroup, the SC also evaluates the subcriteria (yellow highlighted areas).

Steering Committee: Complete all pink highlighted areas of the form. Review the workgroup/TAP assessment of the subcriteria, noting any areas of disagreement; then evaluate the extent to which each major criterion is met; and finally, indicate your recommendation for the endorsement. Provide the rationale for your ratings.

Evaluation ratings of the extent to which the criteria are met
C = Completely (unquestionably demonstrated to meet the criterion)
P = Partially (demonstrated to partially meet the criterion)
M = Minimally (addressed BUT demonstrated to only minimally meet the criterion)
N = Not at all (NOT addressed; OR incorrectly addressed; OR demonstrated to NOT meet the criterion)
NA = Not applicable (only an option for a few subcriteria as indicated)

(for NQF staff use) NQF Review #: 0163 NQF Project: Cardiovascular Endorsement Maintenance 2010

MEASURE DESCRIPTIVE INFORMATION

De.1 Measure Title: Primary PCI received within 90 minutes of Hospital Arrival

De.2 Brief description of measure: Percentage of acute myocardial infarction (AMI) patients with ST-segment elevation or LBBB on the ECG closest to arrival time receiving primary percutaneous coronary intervention (PCI) during the hospital stay with a time from hospital arrival to PCI of 90 minutes or less.

1.1-2 Type of Measure: Process
De.3 If included in a composite or paired with another measure, please identify composite or paired measure N/A

De.4 National Priority Partners Priority Area: Population health
De.5 IOM Quality Domain: Timeliness
De.6 Consumer Care Need: Getting better

CONDITIONS FOR CONSIDERATION BY NQF

Four conditions must be met before proposed measures may be considered and evaluated for suitability as voluntary consensus standards:

A. The measure is in the public domain or an intellectual property (measure steward agreement) is signed. Public domain only applies to governmental organizations. All non-government organizations must sign a measure steward agreement even if measures are made publicly and freely available.

A.1 Do you attest that the measure steward holds intellectual property rights to the measure and the right to use aspects of the measure owned by another entity (e.g., risk model, code set)? Yes

A.2 Indicate if Proprietary Measure (as defined in measure steward agreement):
A.3 Measure Steward Agreement: Government entity and in the public domain - no agreement necessary
A.4 Measure Steward Agreement attached:

B. The measure owner/steward verifies there is an identified responsible entity and process to maintain and
update the measure on a schedule that is commensurate with the rate of clinical innovation, but at least every 3 years. Yes, information provided in contact section

C. The intended use of the measure includes both public reporting and quality improvement.

- Purpose: Public reporting, Internal quality improvement
 Accountability, Payment incentive

D. The requested measure submission information is complete. Generally, measures should be fully developed and tested so that all the evaluation criteria have been addressed and information needed to evaluate the measure is provided. Measures that have not been tested are only potentially eligible for a time-limited endorsement and in that case, measure owners must verify that testing will be completed within 12 months of endorsement.

D.1 Testing: Yes, fully developed and tested
D.2 Have NQF-endorsed measures been reviewed to identify if there are similar or related measures? Yes

(for NQF staff use) Have all conditions for consideration been met? Met

Staff Notes to Stewards (if submission returned):

Staff Notes to Reviewers (issues or questions regarding any criteria):

Staff Reviewer Name(s):

TAP/Workgroup Reviewer Name:

Steering Committee Reviewer Name:

1. IMPORTANCE TO MEASURE AND REPORT

Extent to which the specific measure focus is important to making significant gains in health care quality (safety, timeliness, effectiveness, efficiency, equity, patient-centeredness) and improving health outcomes for a specific high impact aspect of healthcare where there is variation in or overall poor performance. Measures must be judged to be important to measure and report in order to be evaluated against the remaining criteria. (evaluation criteria)

1a. High Impact

(for NQF staff use) Specific NPP goal:

1a.1 Demonstrated High Impact Aspect of Healthcare: Affects large numbers, Leading cause of morbidity/mortality, Severity of illness, Patient/societal consequences of poor quality

1a.2 Summary of Evidence of High Impact: In 2010, an estimated 785,000 Americans will have a new coronary event, and approximately 470,000 will have a recurrent event. An estimated additional 195,000 silent first myocardial infarctions occur each year. Approximately every 25 seconds, an American will have a coronary event, and approximately every minute, one will die. In 2004, AMI resulted in 695,000 hospital stays and $31 billion in health expenditures. The risk of further cardiovascular complications, including recurrent MI, sudden cardiac death, heart failure, stroke, and angina pectoris, among AMI survivors is substantial.

1b. Opportunity for Improvement

Rating: C=Completely; P=Partially; M=Minimally; N=Not at all; NA=Not applicable
1b.1 Benefits (improvements in quality) envisioned by use of this measure: An early PCI reduces the risk of death in patients with ST-segment elevation myocardial infarction (STEMI). Hospital performance rates have gradually increased over the years this measure has been reported to the public. Providers understand the importance of promptly performing a PCI on their STEMI patients. Ongoing use of this measure will help ensure that high performing providers maintain high performance and the relatively lower performing providers have an impetus to improve.

1b.2 Summary of data demonstrating performance gap (variation or overall poor performance) across providers:

<table>
<thead>
<tr>
<th>National performance rates:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2Q09: 87.1%</td>
</tr>
<tr>
<td>3Q09: 88.2%</td>
</tr>
<tr>
<td>4Q09: 89.2%</td>
</tr>
<tr>
<td>1Q10: 90.0%</td>
</tr>
</tbody>
</table>

1b.3 Citations for data on performance gap:

Clinical warehouse data:
- 2Q09: 13,872 AMI patients, 1,456 hospitals
- 3Q09: 13,467 AMI patients, 1,467 hospitals
- 4Q09: 14,147 AMI patients, 1,470 hospitals
- 1Q10: 14,428 AMI patients, 1,504 hospitals

1b.4 Summary of Data on disparities by population group:

At the univariate analysis level (unadjusted odds ratios) rates ranged from 81.4% for African-Americans, to 83.8% for Hispanic/Latinos, 84.7% for Native Americans, 87.2% for Asians/Pacific Islanders, and 88.1% for White/Caucasians. The difference from the lowest to the highest rates was 6.7 percentage points. The rate for Caucasians was higher than the rates for all minority groups.

1b.5 Citations for data on Disparities:

2009 Clinical warehouse data (Total 52,767 patients with race not missing):
- 43,171 Caucasian patients, 4,234 African-American patients, 3,936 Hispanic patients, 1,237 Asian/Pacific Islander patients, and 189 Native American patients.

1c. Outcome or Evidence to Support Measure Focus

1c.1 Relationship to Outcomes (For non-outcome measures, briefly describe the relationship to desired outcome. For outcomes, describe why it is relevant to the target population):

The early use of primary angioplasty in patients with ST-segment myocardial infarction (STEMI) results in a significant reduction in mortality and morbidity. The earlier primary coronary intervention is provided, the more effective it is. National guidelines recommend the prompt initiation of PCI in patients presenting with STEMI.

1c.2-3. Type of Evidence: Evidence-based guideline, Randomized controlled trial, Systematic synthesis of research, Meta-analysis

1c.4 Summary of Evidence (as described in the criteria; for outcomes, summarize any evidence that healthcare services/care processes influence the outcome):

In patients with ST-segment elevation myocardial infarction (STEMI), prompt and complete restoration of flow in the infarct artery is critical to optimizing outcomes. Early reperfusion of ischemic myocardium within the region of an occluded infarct-related artery interrupts the wave front of necrosis, reduces infarct size, preserves regional and global ventricular function, and most importantly improves survival. A meta analysis of 8140 patients enrolled in 23 RCTs found that primary PCI, when compared with fibrinolysis, resulted in 34% lower short-term mortality, and 63% lower rates of stroke. In longer term follow-up, patients receiving PCI had 24% lower risk of death and a 51% lower risk of reinfarction. In the SHOCK trial, patients in the early revascularization group had a mortality rate of 53% at 1 year compared with 66% for the group that had initial medical stabilization followed by no or late revascularization. Time from symptom onset to reperfusion is an important predictor of patient outcome. In terms of PCI, multiple studies have reported increased mortality rates with increasing door-to-balloon times. In one study in particular, time from symptom onset to balloon inflation significantly correlated with 1-year mortality in patients undergoing primary PCI for STEMI (relative...
risk [RR] equals 1.08 for each 30-minute delay from symptom onset to balloon inflation, p equals 0.04), after
adjustment for baseline characteristics. Further analysis of randomized controlled trials suggests that
mortality increases significantly with each 15-minute delay in the time between arrival and restoration of
normal coronary flow. Thus, the importance of timely reperfusion in patients who undergo primary PCI is
clear. Yet despite such strong evidence, studies continue to indicate that reperfusion therapy is not
consistently provided in a timely manner.

1c.5 Rating of strength/quality of evidence (also provide narrative description of the rating and by whom):
ACCF/AHA Task Force on Practice Guidelines, Level of Evidence A: Data derived from multiple randomized
clinical trials or meta-analyses, Multiple populations evaluated; Level of Evidence B: Data derived from a
single randomized trial, or nonrandomized studies, Limited population risk strata evaluated.

1c.6 Method for rating evidence: The method of rating evidence used by the Writing Committee on the
Management of Patients with ST-Elevation Myocardial Infarction in 2004 and 2007 is consistent with the
methodology used by the ACCF/AHA Task Force on Practice Guidelines as described in their publication
“Methodology Manual and Policies From the ACCF/AHA Task Force on Practice Guidelines”
(http://assets.cardiosource.com/Methodology_Manual_for_ACC_AHA_Writing_Committees.pdf). Following
comprehensive searching of the scientific and medical literature on AMI, with special emphasis on STEMI, the
writing committee weighed the strength of evidence for or against a particular treatment or procedure. Using
data available from clinical trials or registries about the usefulness/efficacy in different sub-populations,
such as gender, age, history of diabetes, history of prior MI, history of heart failure, and prior aspirin use, a
level of evidence rating of “A” was given when multiple (3-5) population risk strata were evaluated and there
was general consistency of direction and magnitude of effect, while a rating of “B” was given when limited
(2-3) population risk strata were evaluated.

1c.7 Summary of Controversy/Contradictory Evidence: There is little controversy surrounding the utility of
acute reperfusion therapy for patients with STEMI who do not have contraindications to this therapy. There
remains some controversy about the best approach for acute reperfusion in patients who are first evaluated
at a center that is not equipped to perform primary PCI. The balance of risks and benefits according to the
time necessary for transfer remains an area of active investigation. Thus, this measure addresses only the
time to primary PCI among patients who were admitted and excludes transfers.

1c.8 Citations for Evidence (other than guidelines):
- Eagle KA, Goodman SG, Avezzu A, Budaj A, Sullivan CM, Lopez-Sendon J, for the GRACE

6.3.1.6: Reperfusion (p. 217)

STEMI patients should undergo rapid evaluation for reperfusion therapy and have a reperfusion strategy implemented promptly after contact with the medical system. [“The medical system goal is to facilitate rapid recognition and treatment of patients with STEMI such that door-to-needle (or medical contact-to-needle) time for initiation of fibrinolytic therapy can be achieved within 30 minutes or that door-to-balloon (or medical contact-to-balloon) time for PCI can be kept under 90 minutes.”]

6.3.1.6.4.2. Primary PCI (p. e56)

1. If immediately available, primary PCI should be performed in patients with STEMI (including true posterior MI) or MI with new or presumably new LBBB who can undergo PCI of the infarct artery within 12 hours of symptom onset, if performed in a timely fashion (balloon inflation within 90 minutes of presentation) by persons skilled in the procedure (individuals who perform more than 75 PCI procedures per year). The procedure should be supported by experienced personnel in an appropriate laboratory environment (a laboratory that performs more than 200 PCI procedures per year, of which at least 36 are primary PCI for STEMI, and has cardiac surgery capability).

2. Specific considerations:
- Primary PCI should be performed as quickly as possible with a goal of a medical contact-to-balloon or door-to-balloon interval of within 90 minutes. [STEMI 2007]

6.3.1.6: Reperfusion (p. 217)

STEMI patients presenting to a hospital with PCI capability should be treated with primary PCI within 90 minutes of first medical contact as a systems goal.

1c.9 Quote the Specific guideline recommendation (including guideline number and/or page number):

[STEMI 2004]

6.3.1.6.1. Reperfusion - GENERAL CONCEPTS (p. e38)

All STEMI patients should undergo rapid evaluation for reperfusion therapy and have a reperfusion strategy implemented promptly after contact with the medical system. [“The medical system goal is to facilitate rapid recognition and treatment of patients with STEMI such that door-to-needle (or medical contact-to-needle) time for initiation of fibrinolytic therapy can be achieved within 30 minutes or that door-to-balloon (or medical contact-to-balloon) time for PCI can be kept under 90 minutes.”]

6.3.1.6.4.2. Primary PCI (p. e56)

1. If immediately available, primary PCI should be performed in patients with STEMI (including true posterior MI) or MI with new or presumably new LBBB who can undergo PCI of the infarct artery within 12 hours of symptom onset, if performed in a timely fashion (balloon inflation within 90 minutes of presentation) by persons skilled in the procedure (individuals who perform more than 75 PCI procedures per year). The procedure should be supported by experienced personnel in an appropriate laboratory environment (a laboratory that performs more than 200 PCI procedures per year, of which at least 36 are primary PCI for STEMI, and has cardiac surgery capability).

2. Specific considerations:
- Primary PCI should be performed as quickly as possible with a goal of a medical contact-to-balloon or door-to-balloon interval of within 90 minutes.

[STEMI 2007]

1c.10 Clinical Practice Guideline Citation:

1c.12 Rating of strength of recommendation (also provide narrative description of the rating and by whom):

Ratings made by ACCF/AHA Task Force on Practice Guidelines: Class I recommendation - Conditions for which there is evidence and/or general agreement that a given procedure or treatment is beneficial, useful, and effective.

1c.13 Method for rating strength of recommendation (If different from USPSTF system, also describe rating and how it relates to USPSTF):

The method of rating the strength of a recommendation used by the Writing Committees on the Management of Acute Coronary Syndromes in the United States (USPSTF) is structured to help ensure that the recommendations are based on the best available evidence and that the recommendations are applied consistently across the spectrum of clinical practice. The method of rating the strength of a recommendation is designed to reflect the strength of the evidence supporting the recommendation and the potential impact of the recommendation on patient outcomes. The method of rating the strength of a recommendation is based on a rigorous and systematic review of the evidence, and it is intended to be transparent and accountable. The method of rating the strength of a recommendation is designed to be consistent with the USPSTF system, which is based on a systematic review of the evidence and an assessment of the net benefit of the service. The method of rating the strength of a recommendation is designed to be consistent with the USPSTF system, which is based on a systematic review of the evidence and an assessment of the net benefit of the service.
of Patients with ST-Elevation Myocardial Infarction in 2004 and 2007 is consistent with the methodology used by the ACCF/AHA Task Force on Practice Guidelines as described in their publication “Methodology Manual and Policies From the ACCF/AHA Task Force on Practice Guidelines” (http://assets.cardiosource.com/Methodology_Manual_for_ACC_AHA_Writing_Committees.pdf). In sum, strength is assigned based on examination of evidence and careful assessment of benefit vs. risk. Both the ACCF/AHA Guidelines and the USPSTF assess evidence with respect to two parameters: 1) the magnitude of the benefit, and 2) the certainty of this benefit. However, they use different coding systems. In ascertaining magnitude of the benefit, the ACCF/AHA uses a Class I-III scale and the USPSTF uses a high-moderate-low scale. In determining the certainty of this benefit, the ACCF/AHA uses levels of evidence A-C and USPSTF uses a high-moderate-low scale.

1c.14 Rationale for using this guideline over others:
The ACC/AHA guidelines are widely accepted national guidelines that address the therapy of patients with AMI; they use an explicit and transparent methodology; and have thus served as the foundation of national quality measures.

TAP/Workgroup: What are the strengths and weaknesses in relation to the subcriteria for Importance to Measure and Report?

Steering Committee: Was the threshold criterion, Importance to Measure and Report, met?

Rationale:

Y

2. SCIENTIFIC ACCEPTABILITY OF MEASURE PROPERTIES

Extent to which the measure, as specified, produces consistent (reliable) and credible (valid) results about the quality of care when implemented.

(evaluation criteria)

2a. MEASURE SPECIFICATIONS

| S.1 Do you have a web page where current detailed measure specifications can be obtained? |
| S.2 If yes, provide web page URL: |

2a. Precisely Specified

2a.1 Numerator Statement (Brief, text description of the numerator - what is being measured about the target population, e.g. target condition, event, or outcome):

AMI patients whose time from hospital arrival to primary Percutaneous Coronary Intervention (PCI) is 90 minutes or less.

2a.2 Numerator Time Window (The time period in which cases are eligible for inclusion in the numerator):

From hospital arrival through 90 minutes after hospital arrival

2a.3 Numerator Details (All information required to collect/calculate the numerator, including all codes, logic, and definitions):

Refer to http://www.qualitynet.org/dcs/ContentServer?c=Page&pagename=QnetPublic%2FPage%2FQnetTier4&cid=1228760129036:
- Section 1 - Data Dictionary | Alphabetical Data Dictionary - pages 1-69 through 1-74 and 1-172 through 1-176.
- Section 2 - Measurement Information | Section 2.1 - Acute Myocardial Infarction (AMI) - pages AMI-8a-1 through AMI-8a-7.

2a.4 Denominator Statement (Brief, text description of the denominator - target population being measured):

Principal diagnosis of AMI (International Classification of Diseases, 9th revision, Clinical Modification [ICD-9-CM] principal diagnosis code of AMI: 410.00, 410.01, 410.10, 410.11, 410.20, 410.21, 410.30, 410.31, 410.40, 410.41, 410.50, 410.51, 410.60, 410.61, 410.70, 410.71, 410.80, 410.81, 410.90, 410.91); and PCI procedure (International Classification of Diseases, 9th revision, Clinical Modification [ICD-9-CM] principal or other procedure code for PCI: 00.66); and ST-segment elevation or LBBB on the ECG performed closest to hospital

Comment [KP8]: 2a. The measure is well defined and precisely specified so that it can be implemented consistently within and across organizations and allow for comparability. The required data elements are of high quality as defined by NQF's Health Information Technology Expert Panel (HITEP).
arrival; and PCI performed within 24 hours after hospital arrival.

2a.5 Target population gender: Female, Male
2a.6 Target population age range: Greater than or equal to 18 years old

2a.7 Denominator Time Window (The time period in which cases are eligible for inclusion in the denominator):
From hospital arrival through 24 hours after hospital arrival

2a.8 Denominator Details (All information required to collect/calculate the denominator - the target population being measured - including all codes, logic, and definitions):
ICD-9-CM Principal Diagnosis codes:
• 410.00: Anterolateral wall, acute myocardial infarction-episode of care unspecified
• 410.01: Anterolateral wall, acute myocardial infarction-initial episode
• 410.10: Other anterior wall, acute myocardial infarction-episode of care unspecified
• 410.11: Other anterior wall, acute myocardial infarction-initial episode
• 410.20: Inferolateral wall, acute myocardial infarction-episode of care unspecified
• 410.21: Inferolateral wall, acute myocardial infarction-initial episode
• 410.30: Inferoposterior wall, acute myocardial infarction-episode of care unspecified
• 410.31: Inferoposterior wall, acute myocardial infarction-initial episode
• 410.40: Other inferior wall, acute myocardial infarction-episode of care unspecified
• 410.41: Other inferior wall, acute myocardial infarction-initial episode
• 410.50: Other lateral wall, acute myocardial infarction-episode of care unspecified
• 410.51: Other lateral wall, acute myocardial infarction-initial episode
• 410.60: True posterior wall, acute myocardial infarction-episode of care unspecified
• 410.61: True posterior wall, acute myocardial infarction-initial episode
• 410.70: Subendocardial, acute myocardial infarction-episode of care unspecified
• 410.71: Subendocardial, acute myocardial infarction-initial episode
• 410.80: Other specified sites, acute myocardial infarction-episode of care unspecified
• 410.81: Other specified sites, acute myocardial infarction-initial episode
• 410.90: Unspecified site, acute myocardial infarction-episode of care unspecified
• 410.91: Unspecified site, acute myocardial infarction-initial episode

ICD-9-CM Principal or Other Procedure code: 00.66: Percutaneous transluminal coronary angioplasty [PTCA] or coronary atherectomy

First PCI Date, First PCI Time, and Initial ECG Interpretation - Refer to http://www.qualitynet.org/dcs/ContentServer?c=Page&pagename=QnetPublic%2FPage%2FQnetTier4&cid=1228760129036:
- Section 1 - Data Dictionary | Alphabetical Data Dictionary - pages 1-172 through 1-176 and 1-228 through 1-231.

2a.9 Denominator Exclusions (Brief text description of exclusions from the target population): Exclusions:
- <18 years of age
- Patients who have a length of stay greater than 120 days
- Patients enrolled in clinical trials
- Patients received as a transfer from an inpatient or outpatient department of another hospital
- Patients received as a transfer from the emergency/observation department of another hospital
- Patients received as a transfer from an ambulatory surgery center
- Patient administered fibrinolytic agent prior to PCI
- PCI described as non-primary by physician, advanced practice nurse, or physician assistant
- Patients who did not receive PCI within 90 minutes and had a reason for delay documented by a physician, advanced practice nurse, or physician assistant (e.g., social, religious, initial concern or refusal, cardiopulmonary arrest, balloon pump insertion, respiratory failure requiring intubation)

2a.10 Denominator Exclusion Details (All information required to collect exclusions to the denominator, including all codes, logic, and definitions):
Refer to http://www.qualitynet.org/dcs/ContentServer?c=Page&pagename=QnetPublic%2FPage%2FQnetTier4&cid=1228760129036:

Comment [k9]: 11 Risk factors that influence outcomes should not be specified as exclusions.
12 Patient preference is not a clinical exception to eligibility and can be influenced by provider interventions.
8760129036: Section 2 - Measurement Information | Section 2.1 - Acute Myocardial Infarction (AMI) – pages AMI-5 plus AMI-8a-1 through AMI-8a-7.

2a.11 Stratification Details/Variables

All information required to stratify the measure including the stratification variables, all codes, logic, and definitions:

N/A

2a.12-13 Risk Adjustment Type

No risk adjustment necessary

2a.14 Risk Adjustment Methodology/Variables

[List risk adjustment variables and describe conceptual models, statistical models, or other aspects of model or method]:

N/A

2a.15-17 Detailed risk model available Web page URL or attachment:

2a.18-19 Type of Score

Rate/proportion

2a.20 Interpretation of Score

Better quality = Higher score

2a.21 Calculation Algorithm

(Describe the calculation of the measure as a flowchart or series of steps):

2a.22 Describe the method for discriminating performance (e.g., significance testing):

Benchmarks are established using the ABC methodology, based on the actual performance of the top facilities. ABC benchmarks identify superior performance and encourage poorer performers to improve. The methodology is a data-driven, peer-group performance feedback used to positively affect outcomes.

2a.23 Sampling (Survey) Methodology

If measure is based on a sample (or survey), provide instructions for obtaining the sample, conducting the survey and guidance on minimum sample size (response rate):

Patients admitted to the hospital for inpatient acute care with an ICD-9-CM Principal Diagnosis Code for AMI as defined in section 2a.8, a patient age greater than or equal to 18 years, and a length of stay less than or equal to 120 days would be included in the initial patient population and eligible to be sampled.

Monthly Sample Size Based on Population Size (Average monthly initial patient population size: Minimum required sample size):

- >= 516: 104
- 131-515: 20% of Initial Patient Population size
- 26-130: 26
- < 26: 100%

2a.24 Data Source

(Identify the source(s) for which the measure is specified and tested)

Paper medical record/flow-sheet, Electronic Health/Medical Record

2a.25 Data source/data collection instrument (identify the specific data source/data collection instrument, e.g. name of database, clinical registry, collection instrument, etc.):

Centers for Medicare & Medicaid Services (CMS) Abstraction & Reporting Tool (CART). Vendor tools also available.

2a.26-28 Data source/data collection instrument reference web page URL or attachment:

[URL](http://www.qualitynet.org/dcs/ContentServer?c=Page&pagename=QnetPublic%2FPaget%2FQnetTier3&cid=1135267770141)

2a.29-31 Data dictionary/code table web page URL or attachment:

[URL](http://www.qualitynet.org/dcs/ContentServer?c=Page&pagename=QnetPublic%2FPaget%2FQnetTier4&cid=1228760129036: Section 1 - Data Dictionary | Alphabetical Data Dictionary)
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a.32-35</td>
<td>Level of Measurement/Analysis (Check the level(s) for which the measure is specified and tested)
Facility/Agency, Population: national, Program: QIO</td>
</tr>
<tr>
<td>2a.36-37</td>
<td>Care Settings (Check the setting(s) for which the measure is specified and tested)
Hospital</td>
</tr>
<tr>
<td>2a.38-41</td>
<td>Clinical Services (Healthcare services being measured, check all that apply)</td>
</tr>
</tbody>
</table>

TESTING/ANALYSIS

2b. Reliability testing

2b.1 Data/sample *(description of data/sample and size)*: CDAC (Clinical Data Abstraction Center) validation sample: 3Q09.

2b.2 Analytic Method *(type of reliability & rationale, method for testing)*: CDAC validation sampling involves SDPS selection of sample of 5 cases/quarter across all topics (AMI, HF, Pneumonia, etc.) from each hospital with a minimum of 6 discharges (across all topics) in the Clinical Data Warehouse within 4 months + 15 days following 3Q09. Hospital-abstracted data is compared to CDAC-adjudicated data.

2b.3 Testing Results *(reliability statistics, assessment of adequacy in the context of norms for the test conducted)*:
- Arrival Date - 96.9%
- Arrival Time - 89.8%
- First PCI Date - 90.7%
- First PCI Time - 74.3%
- Clinical Trial - 98.9%
- Comfort Measures Only - 94.3%
- Fibrinolytic Administration - 85.0%
- Initial ECG Interpretation - 89.9%
- Non-Primary PCI - 86.9%
- Reason for Delay in PCI - 63.4%
- Transfer From Another ED - 97.5%

2c. Validity testing

2c.1 Data/sample *(description of data/sample and size)*: Face validity is regularly assessed with the Technical Expert Panel responsible for reviewing and supporting the measure topic.

2c.2 Analytic Method *(type of validity & rationale, method for testing)*: Face validity

2c.3 Testing Results *(statistical results, assessment of adequacy in the context of norms for the test conducted)*: N/A

2d. Exclusions Justified

2d.1 Summary of Evidence supporting exclusion(s):

The exclusions of age < 18 years, length of stay > 120 days, and enrollment in a clinical trial are common to the other measures in the AMI measure set, and to the inpatient Hospital Inpatient Quality Reporting Program measure set in general. Excluding patients who are transferred in from another hospital (including that hospital’s ED) or an ambulatory surgery center allows the measure to hold accountable only those providers who serve as the initial point of contact for acute care treatment of the STEMI patient (beyond emergency medical services), where prompt care of the acute STEMI is expected to be initiated. Lastly, clinical reasons for delays in performing a PCI are justifiable in some cases. Reasons vary, from initial patient refusal or the immediate need to stabilize a patient after an arrest, to situations where a diagnostic test is warranted to rule out aortic dissection, or complications arise during the PCI, such as difficult anatomy/access, delaying...
2d.3 Data/sample (description of data/sample and size): Clinical warehouse data: 143,732 AMI patients, 3,415 hospitals, 1Q10.

2d.4 Analytic Method (type analysis & rationale): A frequency count was conducted to calculate the percentages outlined in section 2d.5. Frequency counts are a simple, efficient way to determine the occurrence of specific values of a data element in a given data set.

2d.5 Testing Results (e.g., frequency, variability, sensitivity analyses): Rates of Exclusion:
- Patients enrolled in clinical trials: 5%
- Received as a transfer either from an acute care facility where they were an inpatient or outpatient or from one distinct unit of the hospital to another distinct unit of the same hospital: 23.5%
- Received as a transfer from the emergency/observation department of another hospital: 2.7%
- No ST-elevation or LBBB on initial ECG: 56.6%
- Fibrinolytic agent given prior to PCI: 0.4%
- No PCI ICD-9-CM procedure code: 4.8%
- PCI performed more than 24 hours after hospital arrival: 0.2%
- Patients who did not receive PCI within 90 minutes and had a reason for delay documented by a physician/APN/PA: 0.9%
- PCI described as non-primary by a physician/APN/PA: 0.3%
- Patients enrolled in clinical trials: 0.5%
- PCI performed more than 24 hours after hospital arrival: 0.2%
- Patients who did not receive PCI within 90 minutes and had a reason for delay documented by a physician/APN/PA: 0.9%

2e.1 Data/sample (description of data/sample and size): N/A

2e.2 Analytic Method (type of risk adjustment, analysis, & rationale): N/A

2e.3 Testing Results (risk model performance metrics): N/A

2e.4 If outcome or resource use measure is not risk adjusted, provide rationale: N/A

2f.1 Data/sample from Testing or Current Use (description of data/sample and size): Clinical warehouse data:
- 2Q09: 13,872 AMI patients, 1,456 hospitals
- 3Q09: 13,467 AMI patients, 1,467 hospitals
- 4Q09: 14,147 AMI patients, 1,470 hospitals
- 1Q10: 14,428 AMI patients, 1,504 hospitals

2f.2 Methods to identify statistically significant and practically meaningful differences in performance (type of analysis & rationale):
Analysts review quarterly benchmarks established (using the ABC methodology) and trends to identify differences in performance scores and investigate the possible causes. ABC benchmarks identify superior clinical performance.

Comment [KP16]: 2e. For outcome measures and other measures (e.g., resource use) when indicated:
- an evidence-based risk-adjustment strategy (e.g., risk models, risk stratification) is specified and is based on patient clinical factors that influence the measured outcome (but not disparities in care) and are present at start of care. Smart benchmarks not defined. OR rationale/data support no risk adjustment.

Comment [K17]: 2f. Risk models should not obscure disparities in care for populations by including factors that are associated with differences/inequalities in care such as race, socioeconomic status, gender (e.g., poorer treatment outcomes of African American men with prostate cancer, inequalities in treatment for CVD risk factors between men and women). It is preferable to stratify measures by race and socioeconomic status rather than adjusting out differences.

Comment [KP18]: 2f. Data analysis demonstrates that methods for scoring and analysis of the specified measure allow for identification of statistically significant and practically clinically meaningful differences in performance.

Comment [K19]: 14. With large enough sample sizes, small differences that are statistically significant may or may not be practically or clinically meaningful. The substantive question may be, for example, whether a statistically significant difference of one percentage point in the percentage of patients who received smoking cessation counseling (e.g., 74% v. 75%) is clinically meaningful; or whether a statistically significant difference of $25 in cost for an episode of care (e.g., $5,000 v. $5,025) is practically meaningful. Measures with overall poor performance may not demonstrate much variability across providers.
2f.3 Provide Measure Scores from Testing or Current Use (description of scores, e.g., distribution by quartile, mean, median, SD, etc.; identification of statistically significant and meaningfully differences in performance):

- National performance rates:
 - 2Q09: 87.1% (benchmark 99.6%)
 - 3Q09: 88.2% (benchmark 99.9%)
 - 4Q09: 89.2% (benchmark 99.7%)
 - 1Q10: 90.0% (benchmark 99.8%)

2g. Comparability of Multiple Data Sources/Methods

2g.1 Data/sample (description of data/sample and size): Both paper records and electronic health records can be used to collect data. Some allowances have been made as facilities incorporate EHRs in their facilities because vendors do not utilize identical data fields, but customize products according to facility need and preferences.

2g.2 Analytic Method (type of analysis & rationale):
No tests have been performed on this measure to determine comparability of sources (paper medical record vs. EHR).

2g.3 Testing Results (e.g., correlation statistics, comparison of rankings):
N/A

2h. Disparities in Care

2h.1 If measure is stratified, provide stratified results (scores by stratified categories/cohorts): Not stratified, but results according to race, sex, etc can be determined.

2h.2 If disparities have been reported/identified, but measure is not specified to detect disparities, provide follow-up plans:
Since the preliminary univariate analyses suggest potential disparities, further analyses are needed to control for the simultaneous effect of other potential factors such as age, gender, comorbidity, and hospital characteristics and to take into account the correlation/cluster effect of patients discharged from the same hospitals.

TAP/Workgroup: What are the strengths and weaknesses in relation to the subcriteria for Scientific Acceptability of Measure Properties?

Steering Committee: Overall, to what extent was the criterion, Scientific Acceptability of Measure Properties, met?
Rationale:

3. USABILITY

Extent to which intended audiences (e.g., consumers, purchasers, providers, policy makers) can understand the results of the measure and are likely to find them useful for decision making. (evaluation criteria)

3a. Meaningful, Understandable, and Useful Information

3a.1 Current Use: In use

3a.2 Use in a public reporting initiative (disclosure of performance results to the public at large) (If used in a public reporting initiative, provide name of initiative(s), locations, Web page URL(s). If not publicly reported, state the plans to achieve public reporting within 3 years):
Hospital Inpatient Quality Reporting Program:
3a.3 If used in other programs/initiatives [If used in quality improvement or other programs/initiatives, name of initiative(s), locations, Web page URL(s). If not used for QI, state the plans to achieve use for QI within 3 years]:

Hospital Inpatient Quality Reporting Program (Measures can be used by individual hospitals for internal quality improvement):

- http://www.qualitynet.org/dcs/ContentServer?c=Page&pageName=QnetPublic%2FPage%2FQnetTier2&cid=1138115987129
- http://www.hospitalcompare.hhs.gov/

Testing of Interpretability *(Testing that demonstrates the results are understood by the potential users for public reporting and quality improvement)*

3a.4 Data/sample (description of data/sample and size): Unknown. [Feedback on the Hospital Compare website (used for public reporting) is collected through another contractor.]

3a.5 Methods (e.g., focus group, survey, QI project):

Voluntary electronic survey by visitors to website.

3a.6 Results (qualitative and/or quantitative results and conclusions):

Not available.

3b/3c. Relation to other NQF-endorsed measures

3b.1 NQF # and Title of similar or related measures:

(for NQF staff use) Notes on similar/related endorsed or submitted measures:

<table>
<thead>
<tr>
<th>3b. Harmonization</th>
</tr>
</thead>
<tbody>
<tr>
<td>If this measure is related to measure(s) already endorsed by NQF (e.g., same topic, but different target population/setting/data source or different topic but same target population):</td>
</tr>
</tbody>
</table>

3b.2 Are the measure specifications harmonized? If not, why?

<table>
<thead>
<tr>
<th>3c. Distinctive or Additive Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describe the distinctive, improved, or additive value this measure provides to existing NQF-endorsed measures:</td>
</tr>
</tbody>
</table>

3c.1 Describe how this measure is distinctive, improved, or additive value:

5.1 If this measure is similar to measure(s) already endorsed by NQF (i.e., on the same topic and the same target population), Describe why it is a more valid or efficient way to measure quality:

No NQF-endorsed measures with same topic and target population.

TAP/Workgroup: What are the strengths and weaknesses in relation to the subcriteria for Usability?

| 3 | Rationale: Overall, to what extent was the criterion, Usability, met? |

4. FEASIBILITY

Extent to which the required data are readily available, retrievable without undue burden, and can be implemented for performance measurement. *(evaluation criteria)*
Susceptibility to Inaccuracies, Errors, or Unintended Consequences

4a. Data Generated as a Byproduct of Care Processes

4a.1-2 How are the data elements that are needed to compute measure scores generated?

Data generated as byproduct of care processes during care delivery (Data are generated and used by healthcare personnel during the provision of care, e.g., blood pressure, lab value, medical condition), Coding/abstraction performed by someone other than the person obtaining original information (E.g., DRG, ICD-9 codes on claims, chart abstraction for quality measure or registry)

4b. Electronic Sources

4b.1 Are all the data elements available electronically? (elements that are needed to compute measure scores are in defined, computer-readable fields, e.g., electronic health record, electronic claims)

No

4b.2 If not, specify the near-term path to achieve electronic capture by most providers.

Retooling work with HHS is expected to be completed in 2011.

4c. Exclusions

4c.1 Do the specified exclusions require additional data sources beyond what is required for the numerator and denominator specifications?

No

4c.2 If yes, provide justification.

4d. Susceptibility to Inaccuracies, Errors, or Unintended Consequences

4d.1 Identify susceptibility to inaccuracies, errors, or unintended consequences of the measure and describe how these potential problems could be audited. If audited, provide results.

1. Since the time of last NQF endorsement (May 2007), feedback was received from a number of providers concerning the exclusion for any fibrinolytic administration in this measure. Providers argued this approach inadvertently captures then excludes a number of cases where fibrinolysis was not used as the primary means for reperfusion - cases appropriate for inclusion in our measure (PCI used as primary reperfusion strategy). Abstraction guidelines were revised to include cases where fibrinolytic therapy was given either during the PCI (e.g., facilitated PCI) or after the PCI.

2. Feedback was also received concerning the documentation requirements of the Reason for Delay in PCI data element. In cases where the patient experiences a cardiac arrest, or requires either intubation or balloon pump insertion, physicians/advanced practice nurses/physician assistants were required to explicitly link such a circumstance to a delay in PCI in order to meet exclusion criteria (just like any other circumstance). They argued that these are scenarios where it is inherently necessary to take the time to stabilize the patient before PCI - the linkage should be considered implicit - and that such a design was resulting in a substantial amount of “false failures” in measure results. In response, the decision was made to lift such documentation requirements for a small number of reasons. In these particular cases, revisions were made to allow physician/advanced practice nurse/physician assistant documentation that an arrest, intubation, or balloon pump insertion occurred within 90 mins. after hospital arrival to automatically count as an acceptable reason for why PCI may have been delayed beyond the 90 min. window, thereby excluding the case without documentation explicitly linking the reason with the delay.

3. The denominator exclusion “Patients who did not receive PCI within 90 minutes and had a reason for delay documented by a physician/advanced practice nurse/physician assistant” had allowed for any physician/advanced practice nurse/physician assistant reason for delay to count as an exclusion. Feedback was later received from providers and the CDAC abstractors/validators that cases were occasionally excluded when it was most appropriate for the case to fail - cases where there was a reason for delay in PCI that was not a clinical, patient-oriented reason, but rather a “system” type of reason (e.g., unavailability of cath lab or cath lab staff). Revisions were made to the data element specifications for April 2007+ discharges to no longer count such reasons as acceptable. It is believed that the number of “false exclusions” has significantly decreased as a result. Yet overuse of this exclusion continues to carry the potential for distorting performance rates. Current overall trends in measure numerator and denominator counts do not suggest obvious gaming of the measure. There is no increasing trend in the use of this reason data element. Nevertheless, exclusion rates for this measure will continue to be monitored for consistency, from quarter to quarter.
4. The data elements used in this measure are closely tracked. Questions submitted by abstractors are recorded, and trends related to published abstraction guidelines and disagreements over measure inclusions and exclusions in general are discussed in-depth every 6 months. Revisions in measure specifications, including data element definitions, are made as issues surface (e.g., what constitutes acceptable physician documentation of a reason for a delay in PCI, how to abstract PCI date/time as documentation shifts with use of new thrombectomy or balloon devices or computerized cath lab documentation systems). The frequency of questions pertaining to each data element is tracked by the Hospital Inpatient Quality Reporting Program QIOSC. Clearly the number of questions a data element receives is another indication of how difficult the specifications for the measure might be. Frequency reports are reviewed regularly, to help identify where issues in data element definitions may exist. Of note, in an August 2010 report run by the Hospital Inpatient Quality Reporting Program QIOSC, the number of questions about the abstraction of the four data elements unique to this measure, First PCI Date, First PCI Time, Non-Primary PCI, and Reason for Delay in PCI, amounted to 89, 20.4% of the total 458 Quest questions received for AMI for that month. Lastly, CDAC validation reports (which compare hospital data to CDAC data) and internal CDAC abstractor accuracy reports are monitored, to ensure good quality data. In sum, issues which may surface in questions submitted by users and CDAC validation/accuracy reports will continue to be closely monitored to identify any additional problems, and revisions will be made if warranted.

4e. Data Collection Strategy/Implementation

4e.1 Describe what you have learned/modified as a result of testing and/or operational use of the measure regarding data collection, availability of data/missing data, timing/frequency of data collection, patient confidentiality, time/cost of data collection, other feasibility/implementation issues:
Revisions made to the Reason for Delay in PCI abstraction guidelines have reduced abstraction burden. In October 2007 and October 2009, guidelines were revised so that abstractors no longer need to look for explicit physician linkage between certain specific clinical conditions and the delay in PCI (see 4d.1, #2 above). Additionally, documentation criteria for identifying a reason for delay were made more restrictive in October 2008 to reduce subjective interpretation by the abstractor. This decreased abstraction burden and improved reliability of the Reason for Delay in PCI data element. Lastly, the Initial ECG Interpretation data element was significantly streamlined in April 2008, and a step-by-step abstraction methodology was constructed to help abstractors through the challenging collection of this type of data.

4e.2 Costs to implement the measure (costs of data collection, fees associated with proprietary measures): Varies according to data collection method (use of vendor) and type of abstractor used to collect clinical data. We have not received feedback that this measure has caused undue burden to the facilities collecting data.

4e.3 Evidence for costs: N/A

4e.4 Business case documentation: N/A

TAP/Workgroup: What are the strengths and weaknesses in relation to the subcriteria for Feasibility?

Steering Committee: Overall, to what extent was the criterion, Feasibility, met? Rationale:

RECOMMENDATION

(for NQF staff use) Check if measure is untested and only eligible for time-limited endorsement.

Steering Committee: Do you recommend for endorsement? Comments:
CONTACT INFORMATION

| Co.1 Measure Steward (Intellectual Property Owner) |
| Co.1 Organization |
| Centers for Medicare & Medicaid Services, 7500 Security Boulevard, Baltimore, Maryland, 21244-1850 |

| Co.2 Point of Contact |
| Kristie, Baus, RN, MS, kristie.baus@cms.hhs.gov, 410-786-8161- |

| Measure Developer if different from Measure Steward |
| Co.3 Organization |
| Centers for Medicare & Medicaid Services, 7500 Security Boulevard, Baltimore, Maryland, 21244-1850 |

| Co.4 Point of Contact |
| Kristie, Baus, RN, MS, kristie.baus@cms.hhs.gov, 410-786-8161- |

| Co.5 Submitter if different from Measure Steward POC |
| Jo, DeBuhr, RN, BSN, broncosrule@att.net, 303-457-3195-, OFMQ |

| Co.6 Additional organizations that sponsored/participated in measure development |
| The Joint Commission |

ADDITIONAL INFORMATION

Workgroup/Expert Panel involved in measure development
Ad.1 Provide a list of sponsoring organizations and workgroup/panel members’ names and organizations. Describe the members’ role in measure development.

- This measure is reviewed and maintained by the Heart Care Technical Expert Panel. Quarterly teleconferences are held to discuss issues pertinent to this measure (and its specifications) and potential revisions. Current members:
 - Frederick Masoudi, MD, MSPH Workgroup Chair: Associate Professor of Medicine (Cardiology), University of Colorado, Denver
 - Don Casey, MD, MPH, MBA: VP Quality and Chief Medical Officer, Atlantic Health, Rep. of the American College of Physicians
 - Elizabeth Delong, PhD: Professor and Chair, Duke University, Biostatistics and Bioinformatics, Co-Director, Outcomes Research and Assessment
 - Joseph Drozda, MD: Clinical Investigator, Mercy Health Research, Executive Committee Member, PCPI, Rep. of American Medical Association
 - John P. Erwin, III: Professor of Medicine, Co-Director, Cardiovascular Fellowship Program, Hospital Champion, Acute Myocardial Infarction Quality Improvement, Scott and White Hospital and Clinic
 - Kerri Fei: Senior Policy Analyst, Measure Development Operations, American Medical Association
 - Susan Fitzgerald, RN, MS: Associate Director, Science and Quality, American College of Cardiology
 - Gary Francis, MD: Professor of Medicine, University of Minnesota, Rep. of Heart Failure Society of America
 - David C. Goff, MD, PhD: Professor and Chair, Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine
 - Kathleen Grady, CNS: Administrative Director, Center for Heart Failure, Bluhm Cardiovascular Institute Division of Cardiothoracic Surgery, Northwestern Memorial Hospital
 - Darryl Gray, MD: Medical Officer, Agency for Healthcare Research and Quality
 - Lee Green, MD: Professor, University of Michigan Medical School
 - Ed Havranek, MD: Professor of Medicine, Denver Health Medical Center, University of Colorado School of Medicine
 - Paul A. Heidenreich: Assistant Professor of Medicine, Associate Professor by courtesy of Health Research and Policy at the VA Palo Alto Health Care System and CHP/PCOR Fellow
 - Alice C. Jacobs, MD: Professor of Medicine, Director, Cardiac Cath Lab, Boston University Medical Center
 - Marvin Konstam, MD: Director, Cardiovascular Center, Tufts Medical Center, Rep. of Heart Failure Society of America
 - Harlan Krumholz, MD: Harold H. Hines, Jr. Professor of Medicine and Epidemiology and Public Health, Yale University School of Medicine
 - Jerod Loeb, PhD: Executive Vice President, Quality Measurement & Research, The Joint Commission
 - Ann [Hiniker] Loth, RN, MS, CNS: Certified Clinical Nurse Specialist, Mayo Foundation
 - Joseph Messer, MD, MACC: Professor of Medicine, Rush University Medical Center, Rep. of American Medical Association
<table>
<thead>
<tr>
<th>Measure Developer/Steward Updates and Ongoing Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad.2 If adapted, provide name of original measure: N/A</td>
</tr>
<tr>
<td>Ad.3-5 If adapted, provide original specifications URL or attachment</td>
</tr>
</tbody>
</table>

| Year the measure was first released: 1999 |
| Month and Year of most recent revision: 10, 2010 |
| What is your frequency for review/update of this measure? Every 6 months |
| When is the next scheduled review/update for this measure? 07, 2011 |

<table>
<thead>
<tr>
<th>Copyright statement/disclaimers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad.10 Additional Information web page URL or attachment:</td>
</tr>
</tbody>
</table>

| Date of Submission (MM/DD/YY): 01/17/2011 |
2d. Clinically necessary measure exclusions are identified and must be:

- supported by evidence of sufficient frequency of occurrence so that results are distorted without the exclusion;
- a clinically appropriate exception (e.g., contraindication) to eligibility for the measure focus;
- precisely defined and specified:
 - if there is substantial variability in exclusions across providers, the measure is specified so that exclusions are computable and the effect on the measure is transparent (i.e., impact clearly delineated, such as number of cases excluded, exclusion rates by type of exclusion);
if patient preference (e.g., informed decision-making) is a basis for exclusion, there must be evidence that it strongly impacts performance on the measure and the measure must be specified so that the information about patient preference and the effect on the measure is transparent (e.g., numerator category computed separately, denominator exclusion category computed separately).