This form contains the measure information submitted by stewards. Blank fields indicate no information was provided. Attachments also may have been submitted and are provided to reviewers. The subcriteria and most of the footnotes from the evaluation criteria are provided in Word comments within the form and will appear if your cursor is over the highlighted area. Hyperlinks to the evaluation criteria and ratings are provided in each section.

TAP/Workgroup (if utilized): Complete all yellow highlighted areas of the form. Evaluate the extent to which each subcriterion is met. Based on your evaluation, summarize the strengths and weaknesses in each section.

Note: If there is no TAP or workgroup, the SC also evaluates the subcriteria (yellow highlighted areas).

Steering Committee: Complete all pink highlighted areas of the form. Review the workgroup/TAP assessment of the subcriteria, noting any areas of disagreement; then evaluate the extent to which each major criterion is met; and finally, indicate your recommendation for the endorsement. Provide the rationale for your ratings.

Evaluation ratings of the extent to which the criteria are met
- C = Completely (unquestionably demonstrated to meet the criterion)
- P = Partially (demonstrated to partially meet the criterion)
- M = Minimally (addressed BUT demonstrated to only minimally meet the criterion)
- N = Not at all (NOT addressed; OR incorrectly addressed; OR demonstrated to NOT meet the criterion)
- NA = Not applicable (only an option for a few subcriteria as indicated)

MEASURE DESCRIPTIVE INFORMATION

De.1 Measurement Title: Hospital 30-day, all-cause, risk-standardized mortality rate (RSMR) following acute myocardial infarction (AMI) hospitalization for patients 18 and older

De.2 Brief description of measure: The measure estimates a hospital-level risk-standardized mortality rate (RSMR), defined as death from any cause within 30 days after the index admission date, for patients 18 and older discharged from the hospital with a principal diagnosis of AMI.

De.3 Type of Measure: Outcome

De.4 National Priority Partners Priority Area: Safety

De.5 IOM Quality Domain: Effectiveness, Patient-centered, Safety

De.6 Consumer Care Need: Getting better

CONDITIONS FOR CONSIDERATION BY NQF

Four conditions must be met before proposed measures may be considered and evaluated for suitability as voluntary consensus standards:

A. The measure is in the public domain or an intellectual property (measure steward agreement) is signed. **Public domain only applies to governmental organizations. All non-government organizations must sign a measure steward agreement even if measures are made publicly and freely available.**

A.1 Do you attest that the measure steward holds intellectual property rights to the measure and the right to use aspects of the measure owned by another entity (e.g., risk model, code set)? **Yes**

A.2 Indicate if Proprietary Measure (as defined in measure steward agreement): **A**

A.3 Measure Steward Agreement: Government entity and in the public domain - no agreement necessary **Y**

A.4 Measure Steward Agreement attached: **N**

Rating: C=Completely; P=Partially; M=Minimally; N=Not at all; NA=Not applicable
B. The measure owner/steward verifies there is an identified responsible entity and process to maintain and update the measure on a schedule that is commensurate with the rate of clinical innovation, but at least every 3 years. Yes, information provided in contact section

C. The intended use of the measure includes both public reporting and quality improvement.

Purpose: Public Reporting, Quality Improvement (Internal to the specific organization)

D. The requested measure submission information is complete. Generally, measures should be fully developed and tested so that all the evaluation criteria have been addressed and information needed to evaluate the measure is provided. Measures that have not been tested are only potentially eligible for a time-limited endorsement and in that case, measure owners must verify that testing will be completed within 12 months of endorsement.

D.1 Testing: Yes, fully developed and tested

D.2 Have NQF-endorsed measures been reviewed to identify if there are similar or related measures? Yes

(for NQF staff use) Have all conditions for consideration been met?

Staff Notes to Steward (if submission returned):

Staff Notes to Reviewers (issues or questions regarding any criteria):

Staff Reviewer Name(s):

TAP/Workgroup Reviewer Name:

Steering Committee Reviewer Name:

1. IMPORTANCE TO MEASURE AND REPORT

Extent to which the specific measure focus is important to making significant gains in health care quality (safety, timeliness, effectiveness, efficiency, equity, patient-centeredness) and improving health outcomes for a specific high impact aspect of healthcare where there is variation in or overall poor performance. Measures must be judged to be important to measure and report in order to be evaluated against the remaining criteria.

1a. High Impact

(for NQF staff use) Specific NPP goal:

1a.1 Demonstrated High Impact Aspect of Healthcare: Affects large numbers, Leading cause of morbidity/mortality, High resource use, Severity of illness

1a.2

1a.3 Summary of Evidence of High Impact: Acute myocardial infarction (AMI) is one of the most common principal hospital discharge diagnoses among older adults and is associated with high mortality. The high prevalence and considerable morbidity and mortality associated with AMI create an economic burden on the healthcare system (American Heart Association, 2010). In 2005, AMI was the fourth most expensive condition treated in US hospitals, accounting for nearly 4% of the national hospital bill. It was also the fourth most expensive condition billed to Medicare that year, accounting for 4.5% of Medicare’s hospital bill (Andrews and Elixhauser, 2007).

Many current hospital interventions are known to decrease the risk of death within 30 days of hospital admission (Jha et al. 2007; Rathore et al. 2009). Current process-based performance measures, however, cannot capture all the ways that care within the hospital might influence outcomes. As a result, many stakeholders, including patient organizations, are interested in outcomes measures that allow patients and providers to assess relative outcomes performance for hospitals.

Andrews RM, Elixhauser A. The national hospital bill: growth trends and 2005 update on the most expensive
1b. Opportunity for Improvement

1b.1 Benefits (improvements in quality) envisioned by use of this measure: The goal of this measure is to improve patient outcomes by providing patients, physicians, and hospitals with information about hospital-level, risk-standardized mortality rates following hospitalization for AMI. Measurement of patient outcomes allows for a broad view of quality of care that encompasses more than what can be captured by individual process-of-care measures. Complex and critical aspects of care, such as communication between providers, prevention of and response to complications, patient safety, and coordinated transitions to the outpatient environment, all contribute to patient outcomes but are difficult to measure by individual process measures. The goal of outcomes measurement is to risk-adjust for patients’ conditions at the time of hospital admission and then evaluate patient outcomes. This mortality measure was developed to identify institutions whose performance is better or worse than would be expected based on their patient case-mix, and therefore promote hospital quality improvement and better inform consumers about care quality.

1b.2 Summary of data demonstrating performance gap (variation or overall poor performance) across providers:
Recent analyses of Medicare FFS data show substantial variation in RSMRs among hospitals. For the most recently reported three years of data (7/2006-6/2009), the mean hospital RSMR was 15.9%, with a range of 10.3% to 24.6%. The 5th percentile was 13.2% and the 95th percentile was 18.4%. The interquartile range was 15.0% to 16.8%.

This work also demonstrated ongoing geographic variation in hospital RSMRs for AMI.

1b.3 Citations for data on performance gap:
The information on the performance gap is based on RSMRs calculated for AMI hospitalizations among Medicare FFS patients aged 65 and over (65+) from July 1, 2006–June 30, 2009, and includes 558,665 hospitalizations from 4,569 hospitals. The index hospitalizations are those included in the measure and reported in the 2010 update to the Hospital Compare website.

1b.4 Summary of Data on disparities by population group:
CMS supported analyses to evaluate disparities in performance by hospitals based on the proportion of patients that they serve who are African-American. These analyses of Medicare FFS data show that the range of performance is similar for hospitals with higher proportions of African-American patients compared with hospitals with lower proportions. We divided hospitals into deciles based on the proportion of their patients that were African-American and looked at hospitals across deciles. The combined lowest five deciles have fewer than 5% African-American patients and a median AMI RSMR of 16.3% (range 10.6%–23.2%) vs. hospitals in the highest decile with >25% African-American patients and a median AMI RSMR of 16.2% (range 11.8%–24.6%).

Similar analyses were completed to evaluate hospital differences in performance based on the socioeconomic status (SES) of their patients. These analyses suggest a slightly higher median AMI RSMR at the hospitals in the lowest quartile based on the SES of their patients (as measured by median income of the patient’s ZIP code). The lowest quartile hospitals’ median RSMR was 16.8% compared to median RSMR of 15.8% for...
hospitals in highest quartile of patient SES. However, the range for the two groups was largely overlapping (11.6%-24.6% vs. 10.6%-22.0%, respectively), demonstrating that substantial numbers of hospitals serving low SES patients perform well on the measure. A recently published study also demonstrated that patient SES accounted for a very small portion of variation in hospital performance on the AMI RSMR measure (Bradley et al. 2010).

1b.5 Citations for data on Disparities:
The sample for the above analyses is from a similar 3-year cohort of Medicare FFS hospitalizations as the data for the performance gap analysis above (January 2006- December 2008) but limited to hospitals with at least 25 AMI cases over the 3-year period, a total of 2,943 hospitals.

1c. Outcome or Evidence to Support Measure Focus

1c.1 Relationship to Outcomes (For non-outcome measures, briefly describe the relationship to desired outcome. For outcomes, describe why it is relevant to the target population): This measure calculates hospital-level, 30-day all-cause mortality rates after hospitalization for an AMI. The goal is to directly affect patient outcomes by measuring risk-standardized rates of mortality.

1c.2-3. Type of Evidence: Systematic synthesis of research

1c.4 Summary of Evidence (as described in the criteria; for outcomes, summarize any evidence that healthcare services/ care processes influence the outcome):
Many hospital interventions, such as use of appropriate medications, timely percutaneous coronary interventions and prevention of complications, are known to decrease the risk of death within 30 days of hospital admission (Rathore et al. 2009; Antman et al. 2008; Jha et al. 2007). Over the last 10 years, nationally, risk-standardized mortality rates have decreased for AMI (Krumholz et al. 2009). Yet, continued variation in performance suggests continued opportunities for improvements.

In addition, recent qualitative research funded by AHRQ, Commonwealth Fund, and UnitedHealthcare identified common system-level approaches to care and, specifically, the tailored use of protocols in those hospitals that have low RSMRs compared with hospitals with high RSMRs (Curry et al. 2011). These findings are being validated in a large national hospital survey (paper in submission).

References:

1c.5 Rating of strength/quality of evidence (also provide narrative description of the rating and by whom): N/A (outcomes measure)

1c.6 Method for rating evidence: N/A (outcomes measure)

1c.7 Summary of Controversy/Contradictory Evidence: Use of Hierarchical Generalized Linear Modeling
Hierarchical modeling for hospital outcomes measurement is the appropriate statistical approach for hospital outcomes measures given the structure of the data and the underlying assumption of such measures, which is that hospital quality of care influences 30-day mortality rates. However, CMS frequently receives comments and questions about this approach, so we are concisely reiterating the rationale for and merits of using hierarchical logistic regression. Patients are clustered within hospitals and, as such, have a shared exposure to the hospital quality and processes. The use of hierarchical modeling accounts for the clustering of patients within hospitals. Second, hierarchical models distinguish within-hospital variation and between-hospital variation to estimate the hospital’s contribution to the risk of mortality. This allows for an estimation of the hospital’s influence on patient outcomes. Finally, within hierarchical models we can account for both differences in case mix and sample size to fairly profile hospital performance. If we did not use hierarchical modeling we could overestimate variation and potentially misclassify hospitals’ performance. Accurately estimating variation is an important objective for models used in public reporting and potentially used in value-based purchasing programs.

Effect of patient-preferences regarding end-of-life care
In certain cases, the best quality care may ultimately be that which supports patients’ goals and comfort at the end of life rather than that which prolongs life. The intent of a mortality rate is not to convey that all deaths are the result of poor care. The goal is not to have zero deaths. The premise is that there are preventable deaths. Knowledge of how an institution performs compared with what might be expected given their case mix is helpful in encouraging efforts to improve outcomes.

Some stakeholders have expressed concerns that our measure cannot adequately exclude patients who choose comfort measures or palliative care during their index hospitalization. Stakeholders are concerned that this could lead to unintended consequences, such as prolonging lives against patient wishes. To address these issues CMS has taken the following steps when applying the measure to the Medicare FFS population aged 65 years or older:

1. CMS added an exclusion for patients who are enrolled in the Medicare hospice program prior to, or on the day of, admission.
2. CMS chose not to exclude patients who are discharged to hospice or seek a palliative care consult during admission to account for the fact that the choice of palliative/comfort care may be the result of poor care.
3. To account for risk factors associated with the end of life, CMS included markers of frailty within our risk-adjustment variables, including: protein-calorie malnutrition, dementia or senility, and hemiplegia, paraplegia, paralysis and functional disability.
4. CMS is looking into the possibility of adding POA codes to the palliative care consult ICD-9 code (v.66.7) to gather more information, but would need to give further consideration to the clinical and measurement implications before instituting any changes to the measure using this code.
5. Although CMS is confident in the current model, CMS will further consider clinical and measurement issues for patients for whom survival is not an objective as it maintains this mortality measure.

1c.8 Citations for Evidence (other than guidelines): N/A

1c.9 Quote the Specific guideline recommendation (including guideline number and/or page number): N/A

1c.10 Clinical Practice Guideline Citation: N/A

1c.11 National Guideline Clearinghouse or other URL: N/A
1c.12 **Rating of strength of recommendation** (also provide narrative description of the rating and by whom):

N/A

1c.13 **Method for rating strength of recommendation** (If different from USPSTF system, also describe rating and how it relates to USPSTF):

N/A

1c.14 **Rationale for using this guideline over others**:

N/A

TAP/Workgroup: What are the strengths and weaknesses in relation to the subcriteria for **Importance to Measure and Report**?

Steering Committee: Was the threshold criterion, **Importance to Measure and Report**, met?

Rationale:

- Y
- N

2. SCIENTIFIC ACCEPTABILITY OF MEASURE PROPERTIES

Extent to which the measure, as specified, produces consistent (reliable) and credible (valid) results about the quality of care when implemented. (evaluation criteria)

2a. MEASURE SPECIFICATIONS

<table>
<thead>
<tr>
<th>S.1 Do you have a web page where current detailed measure specifications can be obtained?</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.2 If yes, provide web page URL:</td>
</tr>
</tbody>
</table>

2a. Precisely Specified

<table>
<thead>
<tr>
<th>2a.1 Numerator Statement (Brief, text description of the numerator - what is being measured about the target population, e.g. target condition, event, or outcome):</th>
</tr>
</thead>
<tbody>
<tr>
<td>This outcome measure does not have a traditional numerator and denominator like a core process measure (e.g., percentage of adult patients with diabetes aged 18-75 years receiving one or more hemoglobin A1c tests per year); thus, we are using this field to define the outcome.</td>
</tr>
</tbody>
</table>

The outcome for this measure is 30-day all-cause mortality. We define mortality as death from any cause within 30 days of the index admission date for patients 18 and older discharged from the hospital with a principal diagnosis of AMI.

<table>
<thead>
<tr>
<th>2a.2 Numerator Time Window (The time period in which cases are eligible for inclusion in the numerator):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients who die within 30 days of the index admission date.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2a.3 Numerator Details (All information required to collect/estimate the numerator, including all codes, logic, and definitions):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure includes deaths from any cause within 30 days from admission date of index hospitalization.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2a.4 Denominator Statement (Brief, text description of the denominator - target population being measured):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: This outcome measure does not have a traditional numerator and denominator like a core process measure; thus, we are using this field to define the patient cohort.</td>
</tr>
</tbody>
</table>

This claims-based measure can be used in either of two patient cohorts: (1) patients aged 65 years or older or (2) patients aged 18 years or older. While the measure can be applied to populations aged 18 years or older, national data are often only available for patients aged 65 years or older. We have explicitly tested the measure in both age groups.

The cohorts include admissions for patients discharged from the hospital with a principal diagnosis of AMI (ICD-9-CM codes 410.xx except for 410.x2) and with a complete claims history for the 12 months prior to admission. Patients who are transferred from one acute care facility to another must have a principal...
discharge diagnosis of AMI at both hospitals. The initial hospital for a transferred patient is designated as the responsible institution for the episode.

If a patient has more than one AMI admission in a year, one hospitalization is randomly selected for inclusion in the measure.

2a.5 Target population gender: Female, Male
2a.6 Target population age range: The target population is age 18 years or older

2a.7 Denominator Time Window (The time period in which cases are eligible for inclusion in the denominator):
This measure was developed with 12 months of data. Currently, the measure is publicly reported with three years of index hospitalizations.

2a.8 Denominator Details (All information required to collect/calculate the denominator - the target population being measured - including all codes, logic, and definitions):
The denominator includes patients aged 18 and older admitted to non-federal acute care hospitals for an AMI defined by a principal discharge diagnosis of ICD-9-CM code 410.xx, excluding those with 410.x2 (AMI, subsequent episode of care), and with a complete claims history for the 12 months prior to admission.

ICD-9-CM codes that define the patient cohort:

410.00 AMI (anterolateral wall) - episode of care unspecified
410.01 AMI (anterolateral wall) - initial episode of care
410.10 AMI (other anterior wall) - episode of care unspecified
410.11 AMI (other anterior wall) - initial episode of care
410.20 AMI (inferolateral wall) - episode of care unspecified
410.21 AMI (inferolateral wall) - initial episode of care
410.30 AMI (inferoposterior wall) - episode of care unspecified
410.31 AMI (inferoposterior wall) - initial episode of care
410.40 AMI (other inferior wall) - episode of care unspecified
410.41 AMI (other inferior wall) - initial episode of care
410.50 AMI (other lateral wall) - episode of care unspecified
410.51 AMI (other lateral wall) - initial episode of care
410.60 AMI (true posterior wall) - episode of care unspecified
410.61 AMI (true posterior wall) - initial episode of care
410.70 AMI (subendocardial) - episode of care unspecified
410.71 AMI (subendocardial) - initial episode of care
410.80 AMI (other specified site) - episode of care unspecified
410.81 AMI (other specified site) - initial episode of care
410.90 AMI (unspecifed site) - episode of care unspecified
410.91 AMI (unspecifed site) - initial episode of care

Note: We do not include 410.x2 (AMI, subsequent episode of care)

2a.9 Denominator Exclusions (Brief text description of exclusions from the target population): For all cohorts, the measure excludes admissions for patients:
- who were discharged on the day of admission or the following day and did not die or get transferred (because it is less likely they had a significant AMI).
- who were transferred from another acute care hospital (because the death is attributed to the hospital where the patient was initially admitted).
- with inconsistent or unknown mortality status or other unreliable data (e.g. date of death precedes admission date).
- who were discharged alive and against medical advice (AMA) (because providers did not have the opportunity to deliver full care and prepare the patient for discharge).
- that were not the first hospitalization in the 30 days prior to a patient’s death. We use this criterion to prevent attribution of a death to two admissions.

For Medicare FFS patients, the measure additionally excludes admissions for patients:

Comment [k9]: 11 Risk factors that influence outcomes should not be specified as exclusions. 12 Patient preference is not a clinical exception to eligibility and can be influenced by provider interventions.
• enrolled in the Medicare Hospice program any time in the 12 months prior to the index hospitalization including the first day of the index admission (since it is likely these patients are continuing to seek comfort measures only). Although this exclusion currently applies to Medicare FFS patients, it could be expanded to include all payer data if an acceptable method for identifying hospice patients outside of Medicare becomes available.

2a.10 Denominator Exclusion Details (All information required to collect exclusions to the denominator, including all codes, logic, and definitions):
See “Denominator Exclusions” section.

2a.11 Stratification Details/Variables (All information required to stratify the measure including the stratification variables, all codes, logic, and definitions):
Results of this measure will not be stratified.

2a.12-13 Risk Adjustment Type: Risk-adjustment devised specifically for this measure/condition

2a.14 Risk Adjustment Methodology/Variables (List risk adjustment variables and describe conceptual models, statistical models, or other aspects of model or method):
Our approach to risk adjustment was tailored to and appropriate for a publicly reported outcome measure, as articulated in the American Heart Association (AHA) Scientific Statement, “Standards for Statistical Models Used for Public Reporting of Health Outcomes” (Krumholz et al. 2006).

The measure employs a hierarchical logistic regression model (a form of hierarchical generalized linear model [HGLM]) to create a hospital level 30-day RSMR. This approach to modeling appropriately accounts for the structure of the data (patients clustered within hospitals), the underlying risk due to patients’ comorbidities, and sample size at a given hospital when estimating hospital mortality rates. In brief, the approach simultaneously models two levels (patient and hospital) to account for the variance in patient outcomes within and between hospitals (Normand and Shahnian et al. 2007). At the patient level, each model adjusts the log-odds of mortality within 30 days of admission for age, sex, selected clinical covariates and a hospital specific intercept. The second level models the hospital-specific intercepts as arising from a normal distribution. The hospital intercept, or hospital specific effect, represents the hospital contribution to the risk of mortality, after accounting for patient risk and sample size, and can be inferred as a measure of quality. The hospital-specific intercepts are given a distribution in order to account for the clustering (non-independence) of patients within the same hospital. If there were no differences among hospitals, then after adjusting for patient risk, the hospital intercepts should be identical across all hospitals.

Candidate and Final Risk-adjustment Variables: The measure was developed using Medicare FFS claims data. Candidate variables were patient-level risk-adjustors that are expected to be predictive of mortality, based on empirical analysis, prior literature, and clinical judgment, including demographic factors (age, sex) and indicators of comorbidity and disease severity. For each patient, covariates were obtained from Medicare claims extending 12 months prior to and including the index admission. The model adjusted for case differences based on the clinical status of the patient at the time of admission. We used condition categories (CCs), which are clinically meaningful groupings of more than 15,000 ICD-9-CM diagnosis codes. We did not risk-adjust for CCs that were possible adverse events of care and that were only recorded in the index admission. In addition, only comorbidities that conveyed information about the patient at that time or in the 12 months prior, and not complications that arose during the course of the hospitalization were included in the risk-adjustment.

The final set of risk-adjustment variables is:

Demographic

- Age-65 (years above 65, continuous) for 65 and over cohorts; or Age (years, continuous) for 18 and over cohorts.
- Male

Cardiovascular

- History of PTCA
- History of CABG
• Congestive heart failure
• History of AMI
• Unstable angina
• Anterior myocardial infarction
• Other location of myocardial infarction
• Chronic atherosclerosis
• Cardio-respiratory failure and shock
• Valvular and rheumatic heart disease

Comorbidity
• Hypertension
• Stroke
• Cerebrovascular disease
• Renal failure
• Chronic Obstructive Pulmonary Disease
• Pneumonia
• Diabetes and DM complications
• Protein-calorie malnutrition
• Dementia and senility
• Hemiplegia, paraplegia, paralysis, functional disability
• Peripheral vascular disease
• Metastatic cancer, acute leukemia and other severe cancers
• Trauma in the last year
• Major psychiatric disorders
• Chronic liver disease

References:

2a.15-17 Detailed risk model available Web page URL or attachment: URL N/A http://www.qualitynet.org/dcs/ContentServer?c=Page&pageName=QnetPublic%2FPage%2FQnetTier3&cid=1163010421830

2a.18-19 Type of Score: Rate/proportion
2a.20 Interpretation of Score: Better quality = Lower score
2a.21 Calculation Algorithm (Describe the calculation of the measure as a flowchart or series of steps):
The RSMR is calculated as the ratio of the number of “adjusted actual” deaths (also known as “predicted”) to the number of “expected” deaths at a given hospital, multiplied by the national unadjusted mortality rate. For each hospital, the “numerator” of the ratio is the number of deaths within 30 days predicted on the basis of the hospital’s performance with its observed case mix, and the “denominator” is the number of deaths expected on the basis of the nation’s performance with that hospital’s case mix. This approach is analogous to a ratio of “observed” to “expected” used in other types of statistical analyses. It conceptually allows for a comparison of a particular hospital’s performance given its case-mix to an average hospital’s performance with the same case-mix. Thus a lower ratio indicates lower-than-expected mortality or better quality and a higher ratio indicates higher-than-expected mortality or worse quality.

The “adjusted actual” deaths (the numerator) is calculated by regressing the risk factors and the hospital-specific intercept on the risk of mortality, multiplying the estimated regression coefficients by the patient characteristics in the hospital, transforming, and then summing over all patients attributed to the hospital to get a value. The expected number of deaths (the denominator) is obtained by regressing the risk factors and
a common intercept on the mortality outcome using all hospitals in our sample, multiplying the subsequent estimated regression coefficients by the patient characteristics observed in the hospital, transforming, and then summing over all patients in the hospital to get a value.

To assess hospital performance in any reporting period, the model coefficients are re-estimated using the years of data in that period.

2a.22 Describe the method for discriminating performance (e.g., significance testing):
CMS currently estimates an interval estimate for each risk-standardized rate to characterize the amount of uncertainty associated with the rate, compares the interval estimate to the national crude rate for the outcome, and categorizes hospitals as “better than,” “worse than,” or “no different than” the US national rate.

2a.23 Sampling (Survey) Methodology If measure is based on a sample (or survey), provide instructions for obtaining the sample, conducting the survey and guidance on minimum sample size (response rate):
N/A - This measure is not based on a sample or survey.

2a.24 Data Source (Check the source(s) for which the measure is specified and tested)
Administrative claims, Other

2a.25 Data source/data collection instrument (identify the specific data source/data collection instrument, e.g. name of database, clinical registry, collection instrument, etc.):
Two data sources were used to create the measure:
1. Medicare Part A inpatient and outpatient and Part B outpatient claims: This database contains claims data for fee-for-service inpatient and outpatient services, including Medicare inpatient hospital care, outpatient hospital services, skilled nursing facility care, some home health agency services, and hospice care, as well as inpatient and outpatient claims for the 12 months prior to an index admission.
2. Medicare Enrollment Database (EDB): This database contains Medicare beneficiary demographic, benefit/coverage, and vital status information. This dataset was used to obtain information on several inclusion/exclusion indicators such as Medicare status on admission as well as vital status. These data have previously been shown to accurately reflect patient vital status (Fleming et al. 1992).

The measure was originally developed with claims data from 1998. The models have been maintained and re-evaluated each year since public reporting of the measure began in 2007. For details, see measure methodology and measure maintenance reports posted at http://qualitynet.org/dcs/ContentServer?c=Page&pagename=QnetPublic%2FPage%2FQnetTier3&cid=1219069855841.

The measure was subsequently applied to California Patient Discharge Data, a large, linked all-payer database of patient hospital admissions. Records are linked by a unique patient identification number, allowing us to determine patient history from previous hospitalizations. In addition, the unique patient ID number is used to link with state vital statistics records to assess 30-day mortality.

To apply the measure to Medicare data, Medicare Part A inpatient and outpatient and Part B outpatient claims are used. To apply the measure to a non-Medicare population, inpatient claims data are used.

This page contains a detailed analysis of a medical measure or model, focusing on its reliability, validity, and testing methods. The analysis includes the development of a mortality medical record model to compare with claims-based administrative models. The model was developed in a randomly selected sample of Medicare FFS patients aged 65+ years, with validation in 50% of the initial one-year cohort and the other 50% of patients in the initial year. Each subsequent year of measure maintenance, the cohorts were recreated in the same way or with very little modification. The developmental cohort consisted of 134,661 cases discharged from 4,646 hospitals. The validation sample consisted of 199,978 cases discharged from 4,668 hospitals. Further validation was conducted in additional years.

Level of Measurement/Analysis

2a.32-35 Level of Measurement/Analysis (Check the level(s) for which the measure is specified and tested)
- Facility

2a.36-37 Care Settings (Check the setting(s) for which the measure is specified and tested)
- Hospital/Acute Care Facility

2a.38-41 Clinical Services (Healthcare services being measured, check all that apply)

Testing/Analysis

2b. Reliability testing

2b.1 Data/sample (description of data/sample and size): The model was developed in a randomly selected 50% of Medicare FFS patients aged 65+ in the initial one-year cohort and tested in the other 50% of patients in the initial one-year cohort. In each subsequent year of measure maintenance, we recreated the cohorts in the same way or with very little modification. The developmental cohort consisted of 134,661 cases discharged from 4,646 hospitals. The validation sample consisted of 199,978 cases discharged from 4,668 hospitals. Further validation was conducted in additional years.

Reference:

2b.2 Analytic Method (type of reliability & rationale, method for testing): In measure development and testing, for all cohorts, we computed diagnostics that describe their respective performance in terms of discriminative ability, overall fit, model coefficients, and generated hospital RSMRs and corresponding interval estimates for the cohort. With all this information, we can compare the changes over time as well as the performance with the model in the development cohort.

2b.3 Testing Results (reliability statistics, assessment of adequacy in the context of norms for the test conducted):

See results under "Risk-Adjustment Strategy" Section 2e.3 below.

Validity testing

2c.1 Data/sample (description of data/sample and size): Measure development and testing included medical-record validation. For the derivation of the chart-based model, we used cases identified through the Health Care Financing Administration (now CMS) Cooperative Cardiovascular Project (CCP) initiative, which included more than 200,000 admissions to non-governmental, acute care hospitals in the United States and Puerto Rico. In the CCP study, CMS sampled all claims from fee-for-service Medicare patients during an approximately 8-month period (varying by state) in 1994 and 1995 who were discharged with a principal diagnosis of AMI (ICD-9-CM code 410, excluding 410.x2). These patients were matched to the Medicare enrollment database to determine survival and, where applicable, the date of death. Corresponding medical records were abstracted by 2 clinical data abstraction centers (DynKePRO [York, PA] and FMAS Corporation [Rockville, MD]), and the clinical data used to confirm the diagnosis of AMI.

2c.2 Analytic Method (type of validity & rationale, method for testing): Medical-record validation: We developed a medical record measure to compare with the administrative measure. We defined the measure cohort for the medical record model using the same inclusion/exclusion criteria consistent with the claims-based administrative measure but using chart-based risk adjusters, such as blood pressure, not available in the claims data. We then matched a sample of the same patients in the administrative data for comparison. The sample included 181,032 patients. Lastly, we examined the model performance and produced the hospital RSMR based on both models for comparison.

2c.3 Testing Results (statistical results, assessment of adequacy in the context of norms for the test conducted):

The mortality medical record model had a c-statistic of 0.77 as compared with 0.69 for the claims model.

Rating: C=Completely; P=Partially; M=Minimally; N=Not at all; NA=Not applicable

Comment [KP10]: 2b. Reliability testing demonstrates the measure results are repeatable, producing the same results a high proportion of the time when assessed in the same population in the same time period.

Comment [KP11]: 8 Examples of reliability testing include, but are not limited to: inter-rater/abstractor or intra-rater/abstractor studies; internal consistency for multi-item scales; test-retest for survey items. Reliability testing may address the data items or final measure score.

Comment [KP12]: 2c. Validity testing demonstrates that the measure reflects the quality of care provided, adequately distinguishing good and poor quality. If face validity is the only validity addressed, it is systematically assessed.

Comment [KP13]: 9 Examples of validity testing include, but are not limited to: determining if measure scores adequately distinguish between providers known to have good or poor quality assessed by another valid method; correlation of measure scores with another valid indicator of quality for the specific topic; ability of measure scores to predict scores on some other related valid measure; content validity for multi-item scales/tests. Face validity is a subjective assessment by experts of whether the measure reflects the quality of care (e.g., whether the proportion of patients with BP < 140/90 is a marker of quality). If face validity is the only validity addressed, it is systematically assessed (e.g., ratings by relevant stakeholders) and the measure is judged to represent quality care for the specific topic and that the measure focus is the most important aspect of quality for the specific topic.
The correlation coefficient between hospital RSMR from medical record model and hospital RSMR from claims model was 0.90, indicating good consistency of the two models.

References:

Citations for Evidence:

See “Denominator Exclusions”

2d. Exclusions Justified

2d.1 Summary of Evidence supporting exclusion(s):

Rationale for exclusions described in “Denominator Exclusions”

2d.2 Citations for Evidence:

See “Denominator Exclusions”

2d.3 Data/sample (description of data/sample and size):

N/A

2d.4 Analytic Method (type analysis & rationale):

N/A

2d.5 Testing Results (e.g., frequency, variability, sensitivity analyses):

N/A

2e. Risk Adjustment for Outcomes/ Resource Use Measures

2e.1 Data/sample (description of data/sample and size):

When applied to Medicare FFS beneficiaries, the prior year of Medicare Part A inpatient and outpatient data and Part B outpatient data are used to identify variables for risk-adjustment. Specifically, Medicare Part A inpatient data are used to identify variables for risk adjustment in the index admission. Part A and B outpatient data are used to identify variables for risk adjustment in the 12-month period preceding the index date of admission.

Application to Medicare FFS Beneficiaries Using Inpatient Data Only for Risk Adjustment

As part of testing the model in all-payer data, we also applied the model to CMS data for Medicare FFS 65+ patients in California hospitals using only inpatient data for risk adjustment. California is a diverse state, and, with more than 37 million residents, California represents 12% of the US population. Specifically, we created a 2006 measure cohort with complete one-year history data and 30-day follow-up data (N= 11,418).

Application to Patients Aged 18 and Older

We also applied the model to all-payer data from California. The analytic sample included 39,481 cases aged 18 and older in the 2006 California Patient Discharge Data. When used in all-payer data, only admission claims data are used for risk adjustment, as the hospital discharge databases do not have outpatient claims. Therefore, the measure can be applied to all payer data for patients 18 and older

The cohorts are as described above in Reliability Testing Data Sample.

2e.2 Analytic Method (type of risk adjustment, analysis, & rationale):

This measure is fully risk-adj usted using a hierarchical logistic regression model to calculate hospital RSMRs. (See “risk adjustment methodology” for additional details.)

Approach to assessing model performance:

During measure development, we computed five summary statistics for assessing model performance (Harrell and Shih, 2001) for the development and validation cohort:

1. over-fitting indices (over-fitting refers to the phenomenon in which a model accurately describes the relationship between predictive variables and outcome in the development dataset but fails to provide valid

<table>
<thead>
<tr>
<th>Rating</th>
<th>C=Completely; P=Partially; M=Minimally; N=Not at all; NA=Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>2d</td>
<td>C □ P □ M □ N □ NA □</td>
</tr>
<tr>
<td>2e</td>
<td>C □ P □ M □ N □ NA □</td>
</tr>
</tbody>
</table>

Comment [KP14]:

2d. Clinically necessary measure exclusions are identified and must be:

- supported by evidence of sufficient frequency of occurrence so that results are distorted without the exclusion;

AND

- a clinically appropriate exception (e.g., contraindication) to eligibility for the measure focus;

AND

- precisely defined and specified:

- if there is substantial variability in exclusions across providers, the measure is specified so that exclusions are computable and the effect on the measure is transparent (i.e., impact clearly delineated, such as number of cases excluded, exclusion rates by type of exclusion); if patient preference (e.g., informed decision-making) is a basis for exclusion, there must be evidence that it strongly impacts performance on the measure and the measure must be specified so that the information about patient preference and the effect on the measure is transparent (e.g., numerator category computed separately, denominator exclusion category computed separately).

Comment [K15]:

10 Examples of evidence that an exclusion distorts measure results include, but are not limited to: frequency of occurrence, sensitivity analyses with and without the exclusion, and variability of exclusions across providers.

Comment [KP16]:

2e. For outcome measures and other measures (e.g., resource use) when indicated:

- an evidence-based risk-adjustment strategy (e.g., risk models, risk stratification) is specified and is based on patient clinical factors that influence the measured outcome (but not disparities in care) and are present at start of care (error! bookmark not defined); OR

- rationale/data support no risk adjustment.

Comment [K17]:

13 Risk models should not obscure disparities in care for populations by including factors that are associated with differences/inequalities in care such as race, socioeconomic status, gender (e.g., poorer treatment outcomes of African American men with prostate cancer, inequalities in treatment for CVD risk factors between men and women). It is preferable to stratify measures by race and socioeconomic status rather than adjusting out differences.
3a.3 Testing Results (risk model performance metrics):
During measure development, using Medicare FFS beneficiaries age 65 and over, we tested the performance of the model developed in a randomly selected half of the 1998 hospitalizations for AMI (representing 199,978 cases discharged from 4,668 hospitals) with hospitalizations from the other half. The performance was not substantively different in the validation sample (ROC area = 0.70) compared with the development cohort (ROC area = 0.71). Further validation was done in additional years of data and these results were consistent with the development cohort.

For the development cohort, the model performance results are summarized below:
- Residuals lack of fit: <-2 = 0.00%; [-2, 0) = 81.92%; [0, 2) = 10.21%; [2+ = 7.84%
- Model Chi-square [# of covariates]: 9370 [27]
- Predictive ability (lowest decile %, highest decile %): (4.0, 40.0)
- Area under the ROC curve = 0.71

For the validation cohort, the results are summarized below:
- Residuals lack of fit: <-2 = 0.00%; [-2, 0) = 81.92%; [0, 2) = 10.22%; [2+ = 7.85%
- Model Chi-square [# of covariates]: 9125 [27]
- Predictive ability (lowest decile %, highest decile %): (4.2, 40.1)
- Area under the ROC curve = 0.70

During the subsequent years of annual maintenance, including the 2010 maintenance update, to test for reliability, we looked at the distributions of comorbid conditions, hospital volume, crude rates, hospital RSMR, risk-adjusted odds ratios and 95% confidence intervals, and between-hospital variance over different time periods during yearly maintenance updates and the parameters were consistent. For example, for the 2006-2008 calendar year dataset, we reported each individual year results as well as the 3-year combined results. Model performance was stable over all time periods; ROC=0.72 across all time periods.
Model Performance in Medicare FFS Beneficiaries Using Inpatient Data Only for Risk Adjustment Using CMS data for Medicare FFS 65+ beneficiaries in California hospitals: (a) the magnitude of odds ratios for most risk factors was similar when comparing the model using full data and using only admission claims data; (b) when comparing the model with full data and with only admission claims data, the reclassification analysis demonstrated good patient-level risk prediction; (c) the c-statistic was similar (0.713 vs. 0.725); and (d) hospital-level risk-standardized rates were highly correlated (r=0.985).

Model Performance in Patients Aged 18 and Older

When the model was applied to all patients 18 and over (18+), overall discrimination was good (c-statistic=0.765). In addition, there was good discrimination and predictive ability in both those aged 18-64 and those aged 65+. Moreover, the distribution of Pearson residuals was comparable across the patient subgroups. When comparing the model with and without interaction terms, (a) the reclassification analysis demonstrated good patient-level risk prediction (1.1% to 34.8% vs. 1.5% to 34.7%, respectively, from the bottom decile to the top decile of the prediction values); (b) the c-statistic was nearly identical (0.767 vs. 0.765); and (c) hospital-level risk-standardized rates were highly correlated (r=0.999). Thus, the inclusion of the interactions did not substantively affect either patient-level model performance or hospital-level results.

Therefore, the measure can be applied to all payer data for patients 18 and older.

References:

2f. If outcome or resource use measure is not risk adjusted, provide rationale: N/A—The measure is risk-adjusted
These results also demonstrated ongoing geographic variation in hospital RSMRs for AMI.

2g. Comparability of Multiple Data Sources/Methods

2g.1 Data/sample (description of data/sample and size): The measure performs well in both Medicare FFS data and all-payer data.

2g.2 Analytic Method (type of analysis & rationale): See above

2g.3 Testing Results (e.g., correlation statistics, comparison of rankings): See above

2h. Disparities in Care

2h.1 If measure is stratified, provide stratified results (scores by stratified categories/cohorts): N/A - Measure is not stratified

2h.2 If disparities have been reported/identified, but measure is not specified to detect disparities, provide follow-up plans:
Disparities in race and socioeconomic status (SES) have been reported at the patient level but our analyses indicate little hospital-level disparities.

TAP/Workgroup: What are the strengths and weaknesses in relation to the subcriteria for Scientific Acceptability of Measure Properties?

Steering Committee: Overall, to what extent was the criterion, Scientific Acceptability of Measure Properties, met?
Rationale:

3. USABILITY

Extent to which intended audiences (e.g., consumers, purchasers, providers, policy makers) can understand the results of the measure and are likely to find them useful for decision making. (evaluation criteria)

3a. Meaningful, Understandable, and Useful Information

3a.1 Current Use: In use

3a.2 Use in a public reporting initiative (disclosure of performance results to the public at large) (If used in a public reporting initiative, provide name of initiative(s), locations, Web page URL(s). If not publicly reported, state the plans to achieve public reporting within 3 years):
The measure has been publicly reported on Hospital Compare (www.hospitalcompare.hhs.gov) since June 2007 and is used in CMS’s Hospital Inpatient Quality Reporting Program (formerly RHQDAPU).

3a.3 If used in other programs/initiatives (If used in quality improvement or other programs/initiatives, name of initiative(s), locations, Web page URL(s). If not used for QI, state the plans to achieve use for QI within 3 years):

Testing of Interpretability (Testing that demonstrates the results are understood by the potential users for public reporting and quality improvement)

3a.4 Data/sample (description of data/sample and size):

Comment [KP20]: 2g. If multiple data sources/methods are allowed, there is demonstration they produce comparable results.

Comment [KP21]: 2h. If disparities in care have been identified, measure specifications, scoring, and analysis allow for identification of disparities through stratification of results (e.g., by race, ethnicity, socioeconomic status, gender); OR rationale/data justifies why stratification is not necessary or not feasible.

Comment [KP22]: 3a. Demonstration that information produced by the measure is meaningful, understandable, and useful to the intended audience(s) for both public reporting and informing quality improvement (e.g., focus group, cognitive testing) and informing quality improvement (e.g., quality improvement initiatives). An important outcome that may not have an identified improvement strategy still can be useful for informing quality improvement by identifying the need for and stimulating new approaches to improvement.
3b. Harmonization

If this measure is related to measure(s) already endorsed by NQF (e.g., same topic, but different target population/setting/data source or different topic but same target population):

3b.1 Are the measure specifications harmonized? If not, why?
Yes, they use a similar risk-adjustment strategy.

3c. Distinctive or Additive Value

3c.1 Describe the distinctive, improved, or additive value this measure provides to existing NQF-endorsed measures:

This measure looks at a different condition for the mortality outcome, AMI, from the two other related mortality measures.

5.1 If this measure is similar to measure(s) already endorsed by NQF (i.e., on the same topic and the same target population), Describe why it is a more valid or efficient way to measure quality:

AHRQ inpatient AMI mortality measure. Inpatient mortality rates can be influenced by hospital length of stay, thus 30-day measures that establish a standard follow-up period are more appropriate for profiling a diverse group of hospitals.

4. FEASIBILITY

4a. Data Generated as a Byproduct of Care Processes

4a.1-2 How are the data elements that are needed to compute measure scores generated?
Coding/abstraction performed by someone other than person obtaining original information (e.g., DRG, ICD-9 codes on claims, chart abstraction for quality measure or registry)

4b. Electronic Sources

4b.1 Are all the data elements available electronically? (elements that are needed to compute measure scores are in defined, computer-readable fields, e.g., electronic health record, electronic claims)
Yes

3a.5 Methods (e.g., focus group, survey, QI project):

This measure is NQF endorsed. Prior to public reporting in 2007, CMS conducted a dry run in December 2006 to provide hospitals and the public with an opportunity to preview the measure methodology, proposed information for public reporting, and hospital-specific information. Additionally, CMS has also conducted consumer testing of the language on Hospital Compare to ensure clarity and ease of interpretation of the information to be posted publicly.

3a.6 Results (qualitative and/or quantitative results and conclusions):

3b/3c. Related to other NQF-endorsed measures

3b.1 NQF # and Title of similar or related measures:

(for NQF staff use) Notes on similar/related endorsed or submitted measures:

<table>
<thead>
<tr>
<th>Rating</th>
<th>C=Completely</th>
<th>P=Partially</th>
<th>M=Minimally</th>
<th>N=Not at all</th>
<th>NA=Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>3b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4b.2 If not, specify the near-term path to achieve electronic capture by most providers.

4c. Exclusions

4c.1 Do the specified exclusions require additional data sources beyond what is required for the numerator and denominator specifications?
No

4c.2 If yes, provide justification.

4d. Susceptibility to Inaccuracies, Errors, or Unintended Consequences

4d.1 Identify susceptibility to inaccuracies, errors, or unintended consequences of the measure and describe how these potential problems could be audited. If audited, provide results.

Using administrative claims variables for risk adjustment:
This measure uses variables from claims data submitted by hospitals for payment as clinical risk adjusters. Our analyses have demonstrated that administrative claims data can be used to develop a risk-adjusted outcome measure for mortality following admission for AMI and that the model produced estimates of RSMRs that are very similar to rates estimated by models based on chart data. This high level of agreement in the results based on the two different approaches supports the use of the claims-based model for public reporting. The model has also demonstrated consistent performance across years of claims data.

The approach to gathering risk factors for patients also mitigates the potential limitations of claims data. Because not every diagnosis is coded at every visit, we use inpatient, outpatient, and physician claims data for the year prior to admission, and diagnosis codes during the index admission, for risk adjustment when the measure is used in Medicare FFS data. When the measure is used in all-payer data, only admission claims data (from the index hospitalization and prior year) are used for risk adjustment; however, model testing demonstrated both strong patient-level model performance and consistent hospital-level results when using only admission claims data. The 1-year time frame provides a more comprehensive view of patients' medical histories than is provided by the secondary diagnosis codes from the index hospitalization alone. If a diagnosis appears in some visits and not others, it is included, minimizing the effect of incomplete coding.

We were careful, however, to include information about each patient's status at admission and not to adjust for possible complications of the admission. Although some codes, by definition, represent conditions that are present before admission (e.g., cancer), other codes and conditions cannot be differentiated from complications during the hospitalization (e.g., infection or shock). If these are secondary diagnoses from the index admission, then they are not adjusted for in the analysis.

4e. Data Collection Strategy/Implementation

4e.1 Describe what you have learned/modified as a result of testing and/or operational use of the measure regarding data collection, availability of data/missing data, timing/frequency of data collection, patient confidentiality, time/cost of data collection, other feasibility/implementation issues:
N/A

4e.2 Costs to implement the measure (costs of data collection, fees associated with proprietary measures):
The measure is developed using administrative claims data and does not necessitate any additional cost/burden on hospitals.

4e.3 Evidence for costs:
N/A

4e.4 Business case documentation: N/A

TAP/Workgroup: What are the strengths and weaknesses in relation to the subcriteria for Feasibility?

Steering Committee: Overall, to what extent was the criterion, Feasibility, met?
Rationale:

Rating: C=Completely; P=Partially; M=Minimally; N=Not at all; NA=Not applicable
<table>
<thead>
<tr>
<th>RECOMMENDATION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(for NQF staff use) Check if measure is untested and only eligible for time-limited endorsement.</td>
<td></td>
</tr>
<tr>
<td>Steering Committee: Do you recommend for endorsement?</td>
<td></td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTACT INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co.1 Measure Steward (Intellectual Property Owner)</td>
</tr>
<tr>
<td>Co.1 Organization</td>
</tr>
<tr>
<td>Centers for Medicare & Medicaid Services (CMS), 7500 Security Boulevard, Mail Stop S3-02-01, Baltimore, Maryland, 21244-9045</td>
</tr>
<tr>
<td>Co.2 Point of Contact</td>
</tr>
<tr>
<td>Lein, Han, PhD, Government Task Leader, lein.han@cms.hhs.gov, 410-786-0205-</td>
</tr>
<tr>
<td>Measure Developer If different from Measure Steward</td>
</tr>
<tr>
<td>Co.3 Organization</td>
</tr>
<tr>
<td>Yale New Haven Health Services Corporation (YNHSC), 1 Church Street, Suite 200, New Haven, Connecticut, 06510</td>
</tr>
<tr>
<td>Co.4 Point of Contact</td>
</tr>
<tr>
<td>Susannah, Bernheim, MD, MHS, susannah.bernheim@yale.edu, 203-764-3271-</td>
</tr>
<tr>
<td>Co.5 Submitter If different from Measure Steward POC</td>
</tr>
<tr>
<td>Susannah, Bernheim, MD, MHS, susannah.bernheim@yale.edu, 410-764-7231-, YNHHSC</td>
</tr>
<tr>
<td>Co.6 Additional organizations that sponsored/participated in measure development</td>
</tr>
<tr>
<td>MPR-Mathematica Policy Research; RTI-Research Triangle Institute</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADDITIONAL INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workgroup/Expert Panel involved in measure development</td>
</tr>
<tr>
<td>Ad.1 Provide a list of sponsoring organizations and workgroup/panel members’ names and organizations. Describe the members’ role in measure development.</td>
</tr>
<tr>
<td>The working group involved in the initial measure development is detailed in the original technical report available at www.qualitynet.org</td>
</tr>
<tr>
<td>Ad.2 If adapted, provide name of original measure: Acute Myocardial Infarction 30-day Mortality</td>
</tr>
<tr>
<td>Ad.3-5 If adapted, provide original specifications URL or attachment: URL</td>
</tr>
<tr>
<td>Measure Developer/Steward Updates and Ongoing Maintenance</td>
</tr>
<tr>
<td>Ad.6 Year the measure was first released: 2007</td>
</tr>
<tr>
<td>Ad.7 Month and Year of most recent revision: 04, 2011</td>
</tr>
<tr>
<td>Ad.8 What is your frequency for review/update of this measure? Yearly</td>
</tr>
<tr>
<td>Ad.9 When is the next scheduled review/update for this measure? 08, 2011</td>
</tr>
<tr>
<td>Ad.10 Copyright statement/disclaimers: N/A</td>
</tr>
<tr>
<td>Ad.11-13 Additional Information web page URL or attachment: URL for Measure Methodology report and Maintenance reports</td>
</tr>
<tr>
<td>Date of Submission (MM/DD/YY): 10/28/2010</td>
</tr>
</tbody>
</table>