This form contains the measure information submitted by stewards. Blank fields indicate no information was provided. Attachments also may have been submitted and are provided to reviewers. The subcriteria and most of the footnotes from the evaluation criteria are provided in Word comments within the form and will appear if your cursor is over the highlighted area. Hyperlinks to the evaluation criteria and ratings are provided in each section.

TAP/Workgroup (if utilized): Complete all yellow highlighted areas of the form. Evaluate the extent to which each subcriterion is met. Based on your evaluation, summarize the strengths and weaknesses in each section.

Note: If there is no TAP or workgroup, the SC also evaluates the subcriteria (yellow highlighted areas).

Steering Committee: Complete all pink highlighted areas of the form. Review the workgroup/TAP assessment of the subcriteria, noting any areas of disagreement; then evaluate the extent to which each major criterion is met; and finally, indicate your recommendation for the endorsement. Provide the rationale for your ratings.

Evaluation ratings of the extent to which the criteria are met:
C = Completely (unquestionably demonstrated to meet the criterion)
P = Partially (demonstrated to partially meet the criterion)
M = Minimally (addressed BUT demonstrated to only minimally meet the criterion)
N = Not at all (NOT addressed; OR incorrectly addressed; OR demonstrated to NOT meet the criterion)
NA = Not applicable (only an option for a few subcriteria as indicated)

MEASURE DESCRIPTIVE INFORMATION

<table>
<thead>
<tr>
<th>De.1 Measure Title: Hospital 30-day, all-cause, risk-standardized readmission rate following heart failure hospitalization for patients 18 and older</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>De.2 Brief description of measure: The measure estimates a hospital 30-day risk-standardized readmission rate (RSRR), defined as readmission for any cause within 30 days after the date of discharge of the index admission for patients 18 and older discharged from the hospital with a principal diagnosis of heart failure (HF).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1.1-2 Type of Measure: Outcome</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>De.3 If included in a composite or paired with another measure, please identify composite or paired measure</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>This measure is paired with a measure of hospital-level, all-cause, 30-day, risk-standardized mortality rate (RSMR) following an HF hospitalization.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>De.4 National Priority Partners Priority Area: Patient and family engagement, Care coordination, Safety</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>De.5 IOM Quality Domain: Effectiveness, Patient-centered, Efficiency, Safety</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>De.6 Consumer Care Need: Getting better, Staying healthy</th>
</tr>
</thead>
</table>

CONDITIONS FOR CONSIDERATION BY NQF

<table>
<thead>
<tr>
<th>Four conditions must be met before proposed measures may be considered and evaluated for suitability as voluntary consensus standards:</th>
</tr>
</thead>
</table>

| A. The measure is in the public domain or an intellectual property (measure steward agreement) is signed. Public domain only applies to governmental organizations. All non-government organizations must sign a measure steward agreement even if measures are made publicly and freely available. |
| A.1 Do you attest that the measure steward holds intellectual property rights to the measure and the right to use aspects of the measure owned by another entity (e.g., risk model, code set)? Yes |
| A.2 Indicate if Proprietary Measure (as defined in measure steward agreement): |
| A.3 Measure Steward Agreement: Government entity in the public domain - no agreement necessary |
| A.4 Measure Steward Agreement attached: |

Rating: C=Completely; P=Partially; M=Minimally; N=Not at all; NA=Not applicable
B. The measure owner/steward verifies there is an identified responsible entity and process to maintain and update the measure on a schedule that is commensurate with the rate of clinical innovation, but at least every 3 years. Yes, information provided in contact section

| B | Y | Y | Y | Y |

C. The intended use of the measure includes both public reporting and quality improvement.

- **Purpose:** Public Reporting, Quality Improvement with Benchmarking (external benchmarking to multiple organizations)

| C | Y | N | N | N |

D. The requested measure submission information is complete. Generally, measures should be fully developed and tested so that all the evaluation criteria have been addressed and information needed to evaluate the measure is provided. Measures that have not been tested are only potentially eligible for a time-limited endorsement and in that case, measure owners must verify that testing will be completed within 12 months of endorsement.

- **D.1 Testing:** Yes, fully developed and tested
- **D.2 Have NQF-endorsed measures been reviewed to identify if there are similar or related measures?** Yes

| D | Y | N | N | N |

(for NQF staff use) Have all conditions for consideration been met?

| Met | Y | N | N |

Staff Notes to Reviewers (issues or questions regarding any criteria):

Staff Reviewer Name(s):

1. **IMPORTANCE TO MEASURE AND REPORT**

 Extent to which the specific measure focus is important to making significant gains in health care quality (safety, timeliness, effectiveness, efficiency, equity, patient-centeredness) and improving health outcomes for a specific high impact aspect of healthcare where there is variation in or overall poor performance. Measures must be judged to be important to measure and report in order to be evaluated against the remaining criteria. (evaluation criteria)

 1a. High Impact

 (for NQF staff use) **Specific NPP goal:**

 1a.1 Demonstrated High Impact Aspect of Healthcare: Affects large numbers, Leading cause of morbidity/mortality, High resource use, Severity of illness, Patient/societal consequences of poor quality

 1a.2

 1a.3 Summary of Evidence of High Impact: The Medicare Payment Advisory Commission (MedPAC) has called for hospital-specific public reporting of readmission rates, identifying HF as a priority condition (MedPAC, 2007). MedPAC finds that readmissions are common, costly, and often preventable. Based on 2005 Medicare data, MedPAC estimates that about 12.5% of Medicare HF admissions were followed by a readmission within 15 days, accounting for more than 90,000 admissions at a cost of $590 million.

 HF is the most common principal discharge diagnosis among older adults and the third highest for hospital reimbursements in 2005 (CMS/OIS, 2006), and the leading cause of readmission among Medicare beneficiaries, with nearly half of HF patients expected to return to the hospital within 6 months of discharge. (Jencks 2009, Krumholz 1997) All-cause 30-day readmission rates per thousand patients discharged with HF increased by 11 percent between 1992 and 2001 (CMS/MPR/MQMS, 2003). HF readmission is a costly event and represents an undesirable outcome of care from the patient’s perspective, and highly disparate HF readmission rates among hospitals suggest there is room for improvement. (MedPAC 2007, Bernheim 2010)

 1a.4 Citations for Evidence of High Impact: Report to the Congress: Promoting Greater Efficiency in

Rating: C=Completely; P=Partially; M=Minimally; N=Not at all; NA=Not applicable
1b. Opportunity for Improvement

1b.1 Benefits (improvements in quality) envisioned by use of this measure: The goal of this measure is to improve patient outcomes by providing patients, physicians, and hospitals with information about hospital-level, risk-standardized readmission rates following hospitalization for HF. Measurement of patient outcomes allows for a broad view of quality of care that encompasses more than what can be captured by individual process-of-care measures. Complex and critical aspects of care, such as communication between providers, prevention of, and response to, complications, patient safety and coordinated transitions to the outpatient environment, all contribute to patient outcomes but are difficult to measure by individual process measures. The goal of outcomes measurement is to risk-adjust for patients' conditions at the time of hospital admission and then evaluate patient outcomes. This measure was developed to identify institutions, whose performance is better or worse than would be expected based on their patient case-mix, and therefore promote hospital quality improvement and better inform consumers about care quality.

1b.2 Summary of data demonstrating performance gap (variation or overall poor performance) across providers:

Our recent analyses of Medicare FFS data show substantial variation in RSRRs among hospitals. For the most recently reported three years of data (7/2006-6/2009) the mean hospital RSRR was 24.6% with a range of 17.3% to 32.4%. The 5th percentile was 21.4% and the 95th was 28.1%. The interquartile range was 23.4% to 25.8.

We have also demonstrated ongoing geographic variation in hospital RSRRs for HF.

Reference:

1b.3 Citations for data on performance gap:
The information on the performance gap is based on RSRRs calculated for HF hospitalizations among Medicare FFS patients aged 65 and over (65+) from July 1, 2006- June 30, 2009 and includes 1,319,065 hospitalizations from 4759 hospitals. The index hospitalizations are those included in the measure and...
reported in the 2010 update to hospital compare.

1b.4 Summary of Data on disparities by population group:
The measure is a hospital-level measure and therefore CMS assessed evidence of disparities by examining hospital performance based on the proportion of African-American patients served or the proportion of low-income patients served by the hospital.

The analyses examining the proportion of Medicare FFS patients that a hospital served who are African-American show slightly higher RSRs for hospitals with higher proportions of African-American patients compared with lower proportions, but the range of performance across all levels is similar. We divided hospitals into deciles based on the proportion of their patients that were African-American and looked at hospital performance on the measure across deciles. The combined lowest 5 deciles include hospitals with fewer than 5% African-American patients and have a median HF RSR of 24.3% (range 18.2% - 33.2%) in comparison hospitals in the highest decile with greater than 25% African American patients have a median HF RSR of 26.0% (range 20.6% - 32.8%). Although this demonstrates slightly worse performance of hospitals with a large proportion of African-American patients, these analyses also show wide variation in performance of hospitals regardless of the proportion of African-American patients and suggest that hospitals with large proportions of African American patients are not consistently performing at a lower or higher level than other hospitals.

Similar analyses were completed to evaluate hospital differences in performance on RSR based on the socioeconomic status (SES) of their patients. These analyses suggest a slightly higher median HF RSR at the hospitals in the lowest quartile based on the SES of their patients (as measured by the median of the patient’s ZIP-code level median income). The lowest quartile hospitals have a median RSR of 25.0% compared to a median RSR of 24.4% for hospitals in highest quartile. However, the range for the two groups is largely overlapping (19.0% - 33.2 % vs. 18.8% - 31.0%, respectively) demonstrating that substantial numbers of hospitals serving low SES patients perform well on the measure.

1b.5 Citations for data on Disparities:
The sample for the above analyses is from a similar 3-year cohort of Medicare FFS hospitalizations as the data for the performance gap analysis above (January 2006- December 2008) but limited to hospitals with at least 25 HF cases over the 3-year period, a total of 4,260 hospitals.

1c. Outcome or Evidence to Support Measure Focus

1c.1 Relationship to Outcomes (For non-outcome measures, briefly describe the relationship to desired outcome. For outcomes, describe why it is relevant to the target population): This measure calculates hospital-level, 30-day all-cause readmission rates after hospitalization for HF. The goal is to directly affect patient outcomes by measuring risk-standardized rates of readmission.

1c.2-3. Type of Evidence: Systematic synthesis of research

1c.4 Summary of Evidence (as described in the criteria; for outcomes, summarize any evidence that healthcare services/care processes influence the outcome): Studies have shown that interventions during and after a hospitalization can be effective in reducing readmission rates in geriatric populations (Benbassat and Taragin, 2000; Naylor et al., 1999; Coleman et al., 2006) and for elderly HF patients particularly (Phillips et al. 2004; Naylor et al. 2004; Koelling et al. 2005; Krumholz et al. 2002). Such interventions can be cost saving (Coleman et al. 2006; Krumholz et al. 2002; Naylor et al. 2004; Koelling et al. 2005; Phillips et al. 2004).

References:

1c.5 Rating of strength/quality of evidence (also provide narrative description of the rating and by whom):

N/A (outcomes measure)

1c.6 Method for rating evidence:

N/A (outcomes measure)

1c.7 Summary of Controversy/Contradictory Evidence:

All-cause Readmission

This measure calculates a 30-day all-cause readmission rate. CMS measures all-cause readmission for rather than readmission due to certain conditions (e.g., heart failure readmissions) for a number of reasons. First, a narrow focus on specific causes of readmission may simply provide an incentive to shift patients away from those codes. Second, within the chain of events that lead to a patient being readmitted to the hospital there is often some aspect of care that could be improved, thereby reducing the risk of readmission. This is not to suggest that all readmissions are preventable, but the goal of the measure is to encourage broad approaches to quality improvement which will thereby lower all patients’ risk of readmission. More narrowly defining readmission measures to those that are disease specific may incentivize a limited focus on improvements in care as opposed to thinking comprehensively about the patient’s full medical and social needs at discharge. Factors which may influence readmission rates include medication reconciliation, patient education, follow-up care and communication between inpatient and outpatient providers. The goal is not to reduce the readmission rate to zero but to reduce overall readmission rates to what is achievable by the best hospitals.

Use of Hierarchical Generalized Linear Modeling

Hierarchical modeling is the appropriate statistical approach for hospital outcomes measures given the structure of the data and the underlying assumption of such measures, which is that hospital quality of care influences 30-day readmission rates. However, CMS frequently receives comments and questions about this approach, so we are concisely reiterating the rationale for and merits of using hierarchical logistic regression. Patients are clustered within hospitals and, as such, have a shared exposure to the hospital quality and processes. The use of hierarchical modeling accounts for the clustering of patients within hospitals. Second, hierarchical models distinguish within-hospital variation and between-hospital variation to estimate the hospital’s contribution to the risk of readmission. This allows for an estimation of the hospital’s influence on patient outcomes. Finally, within hierarchical models we can account for both differences in case mix and sample size to fairly profile hospital performance. If we did not use hierarchical modeling we could overestimate variation and potentially misclassify hospitals’ performance. Accurately estimating variation is an important objective for models used in public reporting and potentially used in value-based purchasing programs.

1c.8 Citations for Evidence (other than guidelines):

1c.9 Quote the Specific guideline recommendation (including guideline number and/or page number):

N/A

1c.10 Clinical Practice Guideline Citation:

N/A

1c.11 National Guideline Clearinghouse or other URL:

N/A
1c.12 Rating of strength of recommendation (also provide narrative description of the rating and by whom):
N/A

1c.13 Method for rating strength of recommendation (If different from USPSTF system, also describe rating and how it relates to USPSTF):
N/A

1c.14 Rationale for using this guideline over others:
N/A

TAP/Workgroup: What are the strengths and weaknesses in relation to the subcriteria for Importance to Measure and Report?

Steering Committee: Was the threshold criterion, Importance to Measure and Report, met?
Rationale:

2. SCIENTIFIC ACCEPTABILITY OF MEASURE PROPERTIES

Extent to which the measure, as specified, produces consistent (reliable) and credible (valid) results about the quality of care when implemented. (evaluation criteria)

2a. MEASURE SPECIFICATIONS

| S.1 Do you have a web page where current detailed measure specifications can be obtained? |
| S.2 If yes, provide web page URL: |
| 2a. Precisely Specified |
| 2a.1 Numerator Statement (Brief, text description of the numerator - what is being measured about the target population, e.g. target condition, event, or outcome): |
This outcome measure does not have a traditional numerator and denominator like a core process measure (e.g., percentage of adult patients with diabetes aged 18-75 years receiving one or more hemoglobin A1c tests per year); thus, we are using this field to define the outcome. The outcome for this measure is 30 day all-cause readmission. We define this as readmission for any cause within 30 days from the date of discharge of the index HF admission for patients 18 and older. In addition, if a patient has one or more admissions within 30 days of discharge from the index admission, only one was counted as a readmission. |
| 2a.2 Numerator Time Window (The time period in which cases are eligible for inclusion in the numerator): |
Defined as readmission for any cause within 30 days from the date of discharge of the index admission. |
| 2a.3 Numerator Details (All information required to collect/calculate the numerator, including all codes, logic, and definitions): |
Measure includes readmissions to any acute care hospital for any cause within 30 days of the index HF admission discharge date. |
| 2a.4 Denominator Statement (Brief, text description of the denominator - target population being measured): |
This outcome measure does not have a traditional numerator and denominator like a core process measure; thus, we are using this field to define the patient cohort and to define the patient cohort. This claims-based measure can be used in either of two patient cohorts: (1) patients aged 65 years or older or (2) patients aged 18 years or older. While the measure can be applied to populations aged 18 years or older, nationally data are often only available for patients aged 65 years or older. We have explicitly tested the measure in both age groups. |

Comment [k7]: USPSTF grading system http://www.ahrq.gov/clinic/uspstf/grades.htm: A - The USPSTF recommends the service. There is high certainty that the net benefit is substantial. B - The USPSTF recommends the service. There is high certainty that the net benefit is moderate to substantial. C - The USPSTF recommends against routinely providing the service. There may be considerations that support providing the service in an individual patient. There is at least moderate certainty that the net benefit is small. Offer or provide this service only if other considerations support the offering or providing the service in an individual patient. D - The USPSTF recommends against the service. There is moderate or high certainty that the service has no net benefit or that the harms outweigh the benefits. I - The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of the service. Evidence is lacking, of poor quality, or conflicting, and the balance of benefits and harms cannot be determined.

Comment [KP8]: 2a. The measure is well defined and precisely specified so that it can be implemented consistently within and across organizations and allow for comparability. The required data elements are of high quality as defined by NQF’s Health Information Technology Expert Panel (HITEP).
The cohort includes admissions for patients discharged from the hospital with a principal diagnosis of HF (ICD-9-CM codes 402.01, 402.11, 402.91, 404.01, 404.03, 404.11, 404.13, 404.91, 404.93, and 428.xx) and with a complete claims history for the 12 months prior to admission.

2a.5 Target population gender: Female, Male
2a.6 Target population age range: The target population is age 18 years or older

2a.7 Denominator Time Window (The time period in which cases are eligible for inclusion in the denominator):
This measure was developed with 12 months of data. Currently the measure is publicly-reported with three years of index hospitalizations.

2a.8 Denominator Details (All information required to collect/calculate the denominator - the target population being measured - including all codes, logic, and definitions):
The denominator includes patients aged 18 and older admitted to non-federal acute care hospitals for HF defined by a principal discharge diagnosis of the following (ICD-9-CM codes 402.01, 402.11, 402.91, 404.01, 404.03, 404.11, 404.13, 404.91, 404.93, and 428.xx) and with a complete claims history for the 12 months prior to admission.

ICD-9-CM codes that define the patient cohort:
- 402.01 Hypertensive heart disease, malignant, with heart failure
- 402.11 Hypertensive heart disease, benign, with heart failure
- 402.91 Hypertensive heart disease, unspecified, with heart failure
- 404.01 Hypertensive heart and chronic kidney disease, malignant, with heart failure and with chronic kidney disease stage I through stage IV, or unspecified
- 404.03 Hypertensive heart and chronic kidney disease, malignant, with heart failure and with chronic kidney disease stage V or end stage renal disease
- 404.11 Hypertensive heart and chronic kidney disease, benign, with heart failure and with chronic kidney disease stage I through stage IV, or unspecified
- 404.13 Hypertensive heart and chronic kidney disease, benign, with heart failure and chronic kidney disease stage V or end stage renal disease
- 404.91 Hypertensive heart and chronic kidney disease, unspecified, with heart failure and with chronic kidney disease stage I through stage IV, or unspecified
- 404.93 Hypertensive heart and chronic kidney disease, unspecified, with heart failure and chronic kidney disease stage V or end stage renal disease
- 428.0 Congestive heart failure, unspecified
- 428.1 Left heart failure
- 428.20 Unspecified systolic heart failure
- 428.21 Acute systolic heart failure
- 428.22 Chronic systolic heart failure
- 428.23 Acute on chronic systolic heart failure
- 428.30 Unspecified diastolic heart failure
- 428.31 Acute diastolic heart failure
- 428.32 Chronic diastolic heart failure
- 428.33 Acute on chronic diastolic heart failure
- 428.40 Unspecified combined systolic and diastolic heart failure
- 428.41 Acute combined systolic and diastolic heart failure
- 428.42 Chronic combined systolic and diastolic heart failure
- 428.43 Acute on chronic combined systolic and diastolic heart failure
- 428.9 Heart Failure, unspecified

2a.9 Denominator Exclusions (Brief text description of exclusions from the target population): For all cohorts, the measure excludes admissions for patients:
- with an in-hospital death (because they are not eligible for readmission);
- without at least 30 days post-discharge enrollment in Medicare FFS (because the 30-day readmission outcome cannot be assessed in this group);

Comment [k9]: 11 Risk factors that influence outcomes should not be specified as exclusions.
12 Patient preference is not a clinical exception to eligibility and can be influenced by provider interventions.
• transferred to another acute care facility (When a patient is transferred from one acute care hospital to another, these multiple contiguous hospitalizations are considered one episode of care. Readmissions for transferred patients are attributed to the hospital that ultimately discharges the patient to a non-acute care setting);

• discharged against medical advice (AMA) (because providers did not have the opportunity to deliver full care and prepare the patient for discharge);

• admitted with HF within 30 days of discharge from an index admission (Admissions within 30 days of discharge of an index admission will be considered readmissions. No admission is counted as a readmission and an index admission. The next eligible admission after the 30-day time period following an index admission will be considered another index admission.)

2a.10 Denominator Exclusion Details (All information required to collect exclusions to the denominator, including all codes, logic, and definitions):
See “Denominator Exclusions” section.

2a.11 Stratification Details/Variables (All information required to stratify the measure including the stratification variables, all codes, logic, and definitions):
Results of this measure will not be stratified.

2a.12-13 Risk Adjustment Type: Risk-adjustment devised specifically for this measure/condition

2a.14 Risk Adjustment Methodology/Variables (List risk adjustment variables and describe conceptual models, statistical models, or other aspects of model or method):
Our approach to risk adjustment was tailored to and appropriate for a publicly reported outcome measure, as articulated in the American Heart Association (AHA) Scientific Statement, “Standards for Statistical Models Used for Public Reporting of Health Outcomes” (Krumholz et al. 2006).

The measure employs a hierarchical logistic regression model (a form of hierarchical generalized linear model [HGLM]) to create a hospital level 30-day RSRR. This approach to modeling appropriately accounts for the structure of the data (patients clustered within hospitals), the underlying risk due to patients’ comorbidities, and sample size at a given hospital when estimating hospital readmission rates. In brief, the approach simultaneously models two levels (patient and hospital) to account for the variance in patient outcomes within and between hospitals (Normand and Shahian et al. 2007). At the patient level, each model adjusts the log-odds of readmission within 30-days of admission for age, sex, selected clinical covariates and a hospital-specific intercept. The second level models the hospital-specific intercepts as arising from a normal distribution. The hospital intercept, or hospital specific effect, represents the hospital contribution to the risk of readmission, after accounting for patient risk and sample size, and can be inferred as a measure of quality. The hospital-specific intercepts are given a distribution in order to account for the clustering (non-independence) of patients within the same hospital. If there were no differences among hospitals, then after adjusting for patient risk, the hospital intercepts should be identical across all hospitals.

Candidate and Final Risk-adjustment Variables: The measure was developed using Medicare FFS claims data. Candidate variables were patient-level risk-adjustors that are expected to be predictive of readmission, based on empirical analysis, prior literature, and clinical judgment, including demographic factors (age, sex) and indicators of comorbidity and disease severity. For each patient, covariates were obtained from Medicare claims extending 12 months prior to and including the index admission. The model adjusted for case differences based on the clinical status of the patient at the time of admission. We used condition categories (CCs), which are clinically meaningful groupings of more than 15,000 ICD-9-CM diagnosis codes. In addition, only comorbidities that conveyed information about the patient at that time or in the 12-months prior, and not complications that arose during the course of the hospitalization were included in the risk-adjustment. We did not risk-adjust for CCs that were possible adverse events of care and that were only recorded in the index admission.

The final set of risk-adjustment variables is:
Demographic
- Age-65 (years above 65, continuous) for 65 and over cohorts; or Age (years, continuous) for 18 and over cohorts.
- Male

Cardiovascular
- History of CABG
- Cardio-respiratory failure or shock
- Congestive heart failure
- Acute coronary syndrome
- Coronary atherosclerosis or angina
- Valvular or rheumatic heart disease
- Specified arrhythmias
- Other or unspecified heart disease
- Vascular or circulatory disease

Comorbidity
- Metastatic cancer or acute leukemia
- Cancer
- Diabetes or DM complications
- Protein-calorie malnutrition
- Disorders of fluid, electrolyte, acid-base
- Liver or biliary disease
- Peptic ulcer, hemorrhage, other specified gastrointestinal disorders
- Other gastrointestinal disorders
- Severe hematological disorders
- Iron deficiency or other anemias and blood disease
- Dementia or other specified brain disorders
- Drug/alcohol abuse/dependence/psychosis
- Major psychiatric disorders
- Depression
- Other psychiatric disorders
- Hemiplegia, paraplegia, paralysis, functional disability
- Stroke
- Chronic obstructive pulmonary disease
- Fibrosis of lung or other chronic lung disorders
- Asthma
- Pneumonia
- End stage renal disease or dialysis
- Renal failure
- Nephritis
- Other urinary tract disorders
- Decubitus ulcer or chronic skin ulcer

References:

2a.15-17 Detailed risk model available Web page URL or attachment:

URL: N/A

http://qualitynet.org/dcs/ContentServer?c=Page&pagename=QnetPublic%2FPage%2FQnetTier3&cid=1219069855841

2a.18-19 Type of Score:

Rate/proportion

2a.20 Interpretation of Score:

Better quality = Lower score

2a.21 Calculation Algorithm (Describe the calculation of the measure as a flowchart or series of steps):

The RSRR is calculated as the ratio of the number of “adjusted-actual” readmissions (also referred to as “predicted”) to the number of “expected” readmissions at a given hospital, multiplied by the national unadjusted readmission rate. For each hospital, the “numerator” of the ratio is the number of readmissions within 30 days predicted on the basis of the hospital’s performance with its observed case mix, and the “denominator” is the number of readmissions expected on the basis of the nation’s performance with that hospital’s case mix. This approach is analogous to a ratio of “observed” to “expected” used in other types of statistical analyses. It conceptually allows for a comparison of a particular hospital’s performance given its case-mix to an average hospital’s performance with the same case-mix. Thus a lower ratio indicates lower-than-expected readmission or better quality and a higher ratio indicates higher-than-expected readmission or worse quality.

The “adjusted actual” readmissions (the numerator) is calculated by regressing the risk factors and the hospital-specific intercept on the risk of readmission, multiplying the estimated regression coefficients by the patient characteristics in the hospital, transforming, and then summing over all patients attributed to the hospital to get a value. The expected number of readmissions (the denominator) is obtained by regressing the risk factors and a common intercept on the readmission outcome using all hospitals in our sample, multiplying the subsequent estimated regression coefficients by the patient characteristics observed in the hospital, transforming, and then summing over all patients in the hospital to get a value.

To assess hospital performance in any reporting period, the model coefficients are re-estimated using the years of data in that period.

2a.22 Describe the method for discriminating performance (e.g., significance testing):

CMS currently estimates an interval estimate for each risk-standardized rate to characterize the amount of uncertainty associated with the rate, compares the interval estimate to the national crude rate for the outcome, and categorizes hospitals as “better than,” “worse than,” or “no different than” the US national rate.

2a.23 Sampling (Survey) Methodology

If measure is based on a sample (or survey), provide instructions for obtaining the sample, conducting the survey and guidance on minimum sample size (response rate):

N/A - This measure is not based on a sample or survey.

2a.24 Data Source (Check the source(s) for which the measure is specified and tested)

Administrative claims, Other

2a.25 Data source/data collection instrument (Identify the specific data source/data collection instrument, e.g. name of database, clinical registry, collection instrument, etc.):

Two data sources were used to create the measure:

1. Medicare Part A Inpatient and Outpatient and Part B outpatient claims: This database contains claims data for fee-for-service inpatient and outpatient services including: Medicare inpatient hospital care, outpatient hospital services, skilled nursing facility care, some home health agency services, and hospice care, as well as inpatient and outpatient claims for the 12 months prior to an index admission.

2. Medicare Enrollment Database (EDB): This database contains Medicare beneficiary demographic, benefit/coverage, and vital status information. This dataset was used to obtain information on several inclusion/exclusion indicators such as Medicare status on admission as well as vital status. These data have previously been shown to accurately reflect patient vital status (Fleming Fisher et al. 1992).

The measure was originally developed with claims data from a 2004 sample of 283,919 cases from 4,669 hospitals. The models have been maintained and re-evaluated each year since public reporting of the measures began in 2009. For details, see measure methodology and measure maintenance reports posted at www.qualitynet.org.
The measure was subsequently applied to California Patient Discharge Data, a large, linked all-payer database of patient hospital admissions. Records are linked by a unique patient identification number, allowing us to determine patient history from previous hospitalizations as well as risk of readmission within 30 days.

To apply the measure to Medicare data, Medicare Part A inpatient and outpatient and Part B outpatient claims are used. To apply the measure to a non-Medicare population, inpatient claims data are used.

2a.26-28 Data source/data collection instrument reference web page URL or attachment: URL N/A http://qualitynet.org/dcs/ContentServer?c=Page&pageName=QnetPublic%2FPage%2FQnetTier3&cid=1219069855841

2a.29-31 Data dictionary/code table web page URL or attachment: URL N/A http://www.qualitynet.org/dcs/ContentServer?c=Page&pageName=QnetPublic%2FPage%2FQnetTier3&cid=118275083979

2a.32-35 Level of Measurement/Analysis (Check the level(s) for which the measure is specified and tested) Facility

2a.36-37 Care Settings (Check the setting(s) for which the measure is specified and tested) Hospital/Acute Care Facility

2a.38-41 Clinical Services (Healthcare services being measured, check all that apply)

TESTING/ANALYSIS

2b. Reliability testing

2b.1 Data/sample (description of data/sample and size): The reliability of the model was tested by randomly selecting 50% of Medicare FFS patients aged 65+ in the initial one-year cohort and developing a risk-adjusted model for this group. We then developed a second model for the remaining 50% of patients. Furthermore, in each subsequent year of measure maintenance we have re-fit the model and compared the frequencies of comorbidities and model fit across 3 years.

2b.2 Analytic Method (type of reliability & rationale, method for testing): In measure development and testing, for all cohorts, we computed diagnostics that describe their respective performance in terms of discriminant ability, overall fit, and generated hospital-level RSRRs and corresponding interval estimates for the development sample.

2b.3 Testing Results (reliability statistics, assessment of adequacy in the context of norms for the test conducted): See results under “Risk-Adjustment Strategy” below.

2c. Validity testing

2c.1 Data/sample (description of data/sample and size): Measure development and testing included medical record validation. For the derivation of the chart-based model, we used cases identified through a Health Care Financing Administration (now CMS) quality initiative, which sampled admissions from fee-for-service Medicare beneficiaries for several clinical conditions, including HF. Cases were identified over between April 1998 and March 1999 or between July 2000 and June 2001. Based on the principal discharge diagnosis, approximately 800 HF discharges per state were identified, and the corresponding medical records were abstracted by data central data abstraction center. In states with fewer than 800 HF discharges, all cases were used. The abstractors first grouped the claims by state, then sorted the universe of eligible claims by age, race, sex, and treating hospital, and then systematically sampled cases from a random starting point.
Patients must have been enrolled in fee-for-service Medicare, resulting in a dataset of 78,882 records.

2d.2 Analytic Method (type of validity & rationale, method for testing):

Medical-record validation: We developed a medical record measure to compare with the administrative measure. We defined a measure cohort with the medical record data using the inclusion/exclusion criteria that was consistent with the claims-based administrative measure but using chart-based risk adjusters, such as blood pressure, not available in the claims data. We then matched a sample of the same patients in the administrative data for comparison. The matched sample included 64,329 patients. We compared the output of the two measures, that is, the state performance results, in the same group of patients.

2c.3 Testing Results (statistical results, assessment of adequacy in the context of norms for the test conducted):

The results of the medical-record validation were produced at the state level. The mortality medical record model had a c-statistic of 0.58 as compared with 0.60 for the claims based model. The correlation coefficient for the results of the administrative model compared with the medical-record model was very high, at 0.97 showing excellent consistency of the two models.

Reference:

2d. Exclusions Justified

2d.1 Summary of Evidence supporting exclusion(s):
Rationale for exclusions described in "Denominator Exclusions"

2d.2 Citations for Evidence:
See "Denominator Exclusions"

2d.3 Data/sample (description of data/sample and size): N/A

2d.4 Analytic Method (type analysis & rationale):
N/A

2d.5 Testing Results (e.g., frequency, variability, sensitivity analyses):
N/A

2e. Risk Adjustment for Outcomes/Resource Use Measures

2e.1 Data/sample (description of data/sample and size):
When applied to Medicare FFS beneficiaries, the prior year of Medicare Part A inpatient and outpatient data and Part B outpatient data are used to identify variables for risk-adjustment.

Application to Medicare FFS Beneficiaries Using Inpatient Data Only for Risk Adjustment

As part of testing the model in all-payer data, we also applied the model to CMS data for Medicare FFS 65+ patients in California hospitals using only inpatient data for risk adjustment. California is a diverse state, and, with more than 37 million residents, California represents 12% of the US population. Specifically, we created a 2006 measure cohort with complete one-year history data and 30-day follow-up data (N=29,169).

Application to Patients Aged 18 and Older

We also applied the model to all-payer data from California. The analytic sample included 76,536 cases aged 18 and older in the 2006 California Patient Discharge Data. When used in all-payer data, only admission claims data are used for risk adjustment, as the hospital discharge databases do not have outpatient claims.

2e.2 Analytic Method (type of risk adjustment, analysis, & rationale):

This measure is fully risk-adjusted using a hierarchical logistic regression model to calculate hospital RSRRs accounting for differences in hospital case-mix. (See "risk adjustment methodology" for additional details.)

Comment [KP16]: 2e. For outcome measures and other measures (e.g., resource use) when indicated:
• an evidence-based risk-adjustment strategy (e.g., risk models, risk stratification) is specified and is based on patient clinical factors that influence the measured outcome (but not disparities in care) and are present at start of care. [Citation not defined, OR rationale/data support no risk adjustment.]

Comment [KP17]: 13 Risk models should not obscure disparities in care for populations by including factors that are associated with disparities/inequalities in care such as race, socioeconomic status, gender (e.g., poorer treatment outcomes of African American men with prostate cancer, inequalities in treatment for CVD risk factors between men and women). It is preferable to stratify measures by race and socioeconomic status rather than adjusting out differences.
Approach to assessing model performance:
During measure development, we computed five summary statistics for assessing model performance (Harrell and Shih, 2001) for the development and validation cohort:
1. over-fitting indices (over-fitting refers to the phenomenon in which a model accurately describes the relationship between predictive variables and outcome in the development dataset but fails to provide valid predictions in new patients)
2. predictive ability
3. area under the receiver operating characteristic (ROC) curve
4. distribution of residuals
5. model chi-square (A test of statistical significance usually employed for categorical data to determine whether there is a good fit between the observed data and expected values; i.e., whether the differences between observed and expected values are attributable to true differences in characteristics or instead the result of chance variation).

Application to Medicare FFS Beneficiaries Using Inpatient Data Only for Risk Adjustment
To help determine whether the measure could be applied to Medicare FFS 65+ patients using only Medicare Part A data, we performed analyses to assess how the model performs when using only admission claims data for risk adjustment, as all-payer hospital discharge databases do not have outpatient claims. To assess the validity of using only admission claims data for risk adjustment, we fit the model separately using the full data and using only admission claims data and (a) compared the odds ratios (ORs) for the various risk factors; (b) conducted a reclassification analysis to compare risk prediction at the patient level; (c) compared model performance in terms of the c-statistic (discrimination); and (d) compared hospital-level risk-standardized rates (scatterplot, correlation coefficient, and R2) to assess whether the model with only admission claims data is different from the current model in profiling hospital rates.

Application to Patients Aged 18 and Older
To help determine whether the measure could be applied to an population of patients aged 18+, we examined the interaction terms between age (18-64 vs. 65+) and each of the other risk factors. Specifically, we fit the model in all patients 18+ with and without interaction terms and (a) conducted a reclassification analysis to compare risk prediction at the patient level; (b) compared the c-statistic; and (c) compared hospital-level risk-standardized rates (scatterplot, correlation coefficient, and R2) to assess whether the model with interactions is different from the current model in profiling hospital rates.

2e.3 Testing Results (risk model performance metrics):
During initial measure development, using Medicare FFS beneficiaries age 65 and over, we tested the performance of the model developed in a random selected half of the 2004 hospitalizations for HF (representing 283,919 cases discharged from 4,669 hospitals) against hospitalizations from the other half (representing 283,528 cases discharged from 4,680 hospitals). The performance was not substantively different in the validation sample (ROC area = 0.60) compared with the development sample (2004). The models appear well calibrated, with the over-fitting indices of (0.089, 1.05).

For the development cohort, the model performance results are summarized below:
Residuals lack of fit (-2, [-2,0),[0,2),[2+]: {0,76.40,17.62,5.98}
Model Chi-Sq [# of covariates]: 6,462 [37]
Predictive ability (lowest decile %, highest decile %): (15%,37%)
Area under ROC curve: .60

For the validation cohort the results are summarized below:
Residuals lack of fit (-2, [-2,0),[0,2),[2+]: {0,76.29,17.83,5.88}
Model Chi-Sq [# of covariates]: 6,632 [37]
Predictive ability (lowest decile %, highest decile %): (15%,37%)
Area under ROC curve: .60

In subsequent years, during annual measure maintenance we looked at the distributions of comorbid conditions, hospital volume, crude rates, hospital RSRR, risk-adjusted odds ratios and 95% confidence
intervals, and between-hospital variance over each subsequent year since 2006 and the and the parameters have remained consistent. For example, for the 2006-2008 calendar year dataset, we reported each individual year results as well as the 3-year combined results. Model performance was stable over all time periods.

Model Performance in Medicare FFS Beneficiaries Using Inpatient Data Only for Risk Adjustment Using CMS data for Medicare FFS 65+ beneficiaries in California hospitals: (a) the magnitude of odds ratios for most risk factors was similar when comparing the model using full data and using only admission claims data; (b) when comparing the model with full data and with only admission claims data, the reclassification analysis demonstrated good patient-level risk prediction; (c) the c-statistic was similar (0.610 vs. 0.611); and (d) hospital-level risk-standardized rates were highly correlated (r=0.986).

Model Performance in Patients Aged 18 and Older
When the model was applied to all patients aged 18 and over (18+), overall discrimination was good (c-statistic=0.638). In addition, there was good discrimination and predictive ability in both those aged 18-64 and those aged 65+. Moreover, the distribution of Pearson residuals was comparable across the patient subgroups. When comparing the model with and without interaction terms, (a) the reclassification analysis demonstrated good patient-level risk prediction (12.0% to 44.1% vs. 13.0% to 43.2%, respectively, from the bottom decile to the top decile of the prediction values); (b) the c-statistic was nearly identical (0.640 vs. 0.638); and (c) hospital-level risk-standardized rates were highly correlated (r=0.998). Thus, the inclusion of the interactions did not substantively affect either patient-level model performance or hospital-level results.

Therefore, the measure can be applied to all payer data for patients 18 and older.

References:

2f. Data/sample from Testing or Current Use (description of data/sample and size):
The data below are based on RSRRs calculated for HF hospitalizations among Medicare FFS patients aged 65+ from July 1, 2006-June 30, 2009 and includes 1,319,065 hospitalizations from 4,759 hospitals. The index hospitalizations are those included in the measure and reported in the 2010 update to Hospital Compare.

2f. Methods to identify statistically significant and practically/meaningfully differences in performance (type of analysis & rationale):
For each RSRR, CMS characterizes the uncertainty associated with the RSRR by estimating the 95% interval estimate. This is similar to a 95% confidence interval but is calculated differently. If the RSRR’s interval estimate does not include the national crude readmission rate (is lower or higher than the rate), then CMS is confident that the hospital’s RSRR is different from the national rate, and describes the hospital on the Hospital Compare Web site as “better than the U.S. national rate” or “worse than the U.S. national rate.” If the interval includes the national rate, then CMS describes the hospital’s RSRR as “no different than the U.S. national rate” or “the difference is uncertain.” CMS does not classify performance for hospitals that have fewer than 25 HF cases in the three-year period.

2f.3 Provide Measure Scores from Testing or Current Use (description of scores, e.g., distribution by quartile, mean, median, SD, etc.; identification of statistically significant and meaningfully differences in performance):
Recent analyses of Medicare FFS data show substantial variation in hospital RSRR’s for HF:

<table>
<thead>
<tr>
<th>Quartile</th>
<th>C</th>
<th>P</th>
<th>M</th>
<th>N</th>
</tr>
</thead>
</table>

Comment [KP18]: 2f. Data analysis demonstrates that methods for scoring and analysis of the specified measure are designed to identify statistically significant and practically/clinically meaningful differences in performance.

Comment [k19]: 2f. With large enough sample sizes, small differences that are statistically significant may or may not be practically or clinically meaningful. The substantive question may be, for example, whether a statistically significant difference of one percentage point in the percentage of patients who received smoking cessation counseling (e.g., 74% vs. 75%) is clinically meaningful; or whether a statistically significant difference of $25 in cost for an episode of care (e.g., $5,000 vs. $5,025) is practically meaningful. Measures with overall poor performance may not demonstrate much variability across providers.
<table>
<thead>
<tr>
<th>2g. Comparability of Multiple Data Sources/Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>2g.1 Data/sample (description of data/sample and size): The measure performs well in both Medicare FFS data and all-payer data.</td>
</tr>
<tr>
<td>2g.2 Analytic Method (type of analysis & rationale): See above</td>
</tr>
<tr>
<td>2g.3 Testing Results (e.g., correlation statistics, comparison of rankings): See above</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2h. Disparities in Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>2h.1 If measure is stratified, provide stratified results (scores by stratified categories/cohorts): N/A - Measure is not stratified</td>
</tr>
<tr>
<td>2h.2 If disparities have been reported/identified, but measure is not specified to detect disparities, provide follow-up plans: The analyses performed by CMS (described in section 1b) demonstrate that hospitals have largely overlapping performance on the measure regardless of the proportion of patients of low socioeconomic status or of African-American race. Importantly, the analyses show that hospitals with high proportions of low socioeconomic status patients or high proportions of African-American patients are able to perform well on the measure. For this reason CMS does not plan to stratify the measure.</td>
</tr>
</tbody>
</table>

TAP/Workgroup: What are the strengths and weaknesses in relation to the subcriteria for Scientific Acceptability of Measure Properties? 2

Steering Committee: Overall, to what extent was the criterion, Scientific Acceptability of Measure Properties, met? Rationale:

3. USABILITY

Extent to which intended audiences (e.g., consumers, purchasers, providers, policy makers) can understand the results of the measure and are likely to find them useful for decision making. (evaluation criteria) Eval Rating 2

3a. Meaningful, Understandable, and Useful Information

3a.1 Current Use: In use

3a.2 Use in a public reporting initiative (disclosure of performance results to the public at large) (If used in a public reporting initiative, provide name of initiative(s), locations, Web page URL(s). If not publicly reported, state the plans to achieve public reporting within 3 years): The measure has been publicly reported on Hospital Compare (www.hospitalcompare.hhs.gov) since July 2009 and is used in CMS’s Hospital Inpatient Quality Reporting Program (formerly RHQDAU). 3a.3 If used in other programs/initiatives (If used in quality improvement or other programs/initiatives, name of initiative(s), locations, Web page URL(s). If not used for QI, state the plans to achieve use for QI within 3 years):
Testing of Interpretability
(Testing that demonstrates the results are understood by the potential users for public reporting and quality improvement)

3a.4 Data/sample (description of data/sample and size):

3a.5 Methods (e.g., focus group, survey, QI project):
This measure was originally NQF endorsed in 2008. Prior to public reporting in 2009, CMS conducted a dry run in 2008 to provide hospitals and the public with an opportunity to preview the measure methodology, proposed information for public reporting and hospital-specific information. Additionally, CMS has conducted consumer testing of the language on Hospital Compare to ensure clarity and ease of interpretation of the information to be posted publicly.

3a.6 Results (qualitative and/or quantitative results and conclusions):

3b/3c. Relation to other NQF-endorsed measures

3b. Harmonization
If this measure is related to measure(s) already endorsed by NQF (e.g., same topic, but different target population/setting/data source or different topic but same target population):

3b.2 Are the measure specifications harmonized? If not, why?
Yes, they used a similar risk adjustment strategy.

3c. Distinctive or Additive Value
3c.1 Describe the distinctive, improved, or additive value this measure provides to existing NQF-endorsed measures:
This measure looks at a different condition for the readmission outcome, HF, from the two other related readmission measures for AMI and pneumonia.

5.1 If this measure is similar to measure(s) already endorsed by NQF (i.e., on the same topic and the same target population), Describe why it is a more valid or efficient way to measure quality:

TAP/Workgroup: What are the strengths and weaknesses in relation to the subcriteria for Usability?

Steering Committee: Overall, to what extent was the criterion, Usability, met?

Rationale:

4. FEASIBILITY

Extent to which the required data are readily available, retrievable without undue burden, and can be implemented for performance measurement. (evaluation criteria)

4a. Data Generated as a Byproduct of Care Processes

4a.1-2 How are the data elements that are needed to compute measure scores generated? Coding/abstraction performed by someone other than person obtaining original information (E.g., DRG, ICD-9 codes on claims, chart abstraction for quality measure or registry)

4b. Electronic Sources

4b.1 Are all the data elements available electronically? (elements that are needed to compute measure scores are in defined, computer-readable fields, e.g., electronic health record, electronic claims)

Rating: C=Completely; P=Partially; M=Minimally; N=Not at all; NA=Not applicable
| Yes
| 4b.2 If not, specify the near-term path to achieve electronic capture by most providers. |

4c. Exclusions

4c.1 Do the specified exclusions require additional data sources beyond what is required for the numerator and denominator specifications?
No

4c.2 If yes, provide justification.

4d. Susceptibility to Inaccuracies, Errors, or Unintended Consequences

4d.1 Identify susceptibility to inaccuracies, errors, or unintended consequences of the measure and describe how these potential problems could be audited. If audited, provide results.

Using administrative claims variables for risk adjustment:
This measure uses variables from claims data submitted by hospitals for payment as clinical risk adjusters. Our analyses have demonstrated that administrative claims data can be used to develop a risk-adjusted outcome measure for readmission following admission for HF and that the model produced estimates of RSRRs that are very similar to rates estimated by models based on chart data. This high level of agreement in the results based on the two different approaches supports the use of the claims-based model for public reporting. The model has also demonstrated consistent performance across years of claims data.

The approach to gathering risk factors for patients also mitigates the potential limitations of claims data. Because not every diagnosis is coded at every visit, we use inpatient, outpatient, and physician claims data for the year prior to admission, and diagnosis codes during the index admission, for risk adjustment when the measure is used in Medicare FFS data. When the measure is used in all-payer data, only admission claims data (from the index hospitalization and prior year) are used for risk adjustment; however, model testing demonstrated both strong patient-level model performance and consistent hospital-level results when using only admission claims data. The 1-year time frame provides a more comprehensive view of patients’ medical histories than is provided by the secondary diagnosis codes from the index hospitalization alone. If a diagnosis appears in some visits and not others, it is included, minimizing the effect of incomplete coding.

We were careful, however, to include information about each patient’s status at admission and not to adjust for possible complications of the admission. Although some codes, by definition, represent conditions that are present before admission (e.g., cancer), other codes and conditions cannot be differentiated from complications during the hospitalization (e.g. infection or shock). If these are secondary diagnoses from the index admission, then they are not adjusted for in the analysis.

4e. Data Collection Strategy/Implementation

4e.1 Describe what you have learned/modified as a result of testing and/or operational use of the measure regarding data collection, availability of data/missing data, timing/frequency of data collection, patient confidentiality, time/cost of data collection, other feasibility/implementation issues:
N/A

4e.2 Costs to implement the measure (costs of data collection, fees associated with proprietary measures):
The measure is developed using administrative claims data and does not necessitate any additional cost/burden on hospitals.

4e.3 Evidence for costs:
N/A

4e.4 Business case documentation: N/A

TAP/Workgroup: What are the strengths and weaknesses in relation to the subcriteria for Feasibility?

Steering Committee: Overall, to what extent was the criterion, Feasibility, met?

Rating: C=Completely; P=Partially; M=Minimally; N=Not at all; NA=Not applicable

Comment [KP28]: 4c. Exclusions should not require additional data sources beyond what is required for scoring the measure (e.g., numerator and denominator) unless justified as supporting measure validity.

Comment [KP29]: 4d. Susceptibility to inaccuracies, errors, or unintended consequences and the ability to audit the data items to detect such problems are identified.

Comment [KP30]: 4e. Demonstration that the data collection strategy (e.g., source, timing, frequency, sampling, patient confidentiality, etc.) can be implemented (e.g., already in operational use, or testing demonstrates that it is ready to put into operational use).
Rationale:

<table>
<thead>
<tr>
<th>C</th>
<th>P</th>
<th>M</th>
<th>N</th>
</tr>
</thead>
</table>

RECOMMENDATION

(for NQF staff use) Check if measure is untested and only eligible for time-limited endorsement.

<table>
<thead>
<tr>
<th>Time-limited</th>
</tr>
</thead>
</table>

Steering Committee: Do you recommend for endorsement?

<table>
<thead>
<tr>
<th>Y</th>
<th>N</th>
<th>A</th>
</tr>
</thead>
</table>

CONTACT INFORMATION

<table>
<thead>
<tr>
<th>Co.1 Measure Steward (Intellectual Property Owner)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co.1 Organization</td>
</tr>
<tr>
<td>Centers for Medicare & Medicaid Services, 7500 Security Boulevard, Mail Stop 53-02-01, Baltimore, Maryland, 21244-9045</td>
</tr>
<tr>
<td>Co.2 Point of Contact</td>
</tr>
<tr>
<td>Lein, Han, PhD, Government Task Leader, Lein.han@cms.hhs.gov, 410-786-0205-</td>
</tr>
</tbody>
</table>

| Co.3 Organization |
| Yale New Haven Health Services Corporation YNHHSC, 1 Church St., Suite 200, New Haven, Connecticut, 06510 |
| Co.4 Point of Contact |
| Susannah, Bernheim, MD, MHS, susannah.bernheim@yale.edu, 203-764-7231- |

| Co.5 Submitter If different from Measure Steward POC |
| Susannah, Bernheim, MD, MHS, susannah.bernheim@yale.edu, 203-764-7231-, Centers for Medicare & Medicaid Services |

| Co.6 Additional organizations that sponsored/participated in measure development |
| MPR- Mathematica Policy Research, RTI- Research Triangle Institute |

ADDITIONAL INFORMATION

Workgroup/Expert Panel involved in measure development

<table>
<thead>
<tr>
<th>Ad.1 Provide a list of sponsoring organizations and workgroup/panel members’ names and organizations. Describe the members’ role in measure development.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The working group involved in the initial measure development is detailed in the original technical report available at www.qualitynet.org</td>
</tr>
</tbody>
</table>

| Ad.2 If adapted, provide name of original measure: |
| N/A |

| Ad.3-5 If adapted, provide original specifications URL or attachment: |
| URL N/A www.qualitynet.org |

Measure Developer/Steward Updates and Ongoing Maintenance

| Ad.6 Year the measure was first released: |
| 2008 |

| Ad.7 Month and Year of most recent revision: |
| 04, 2011 |

| Ad.8 What is your frequency for review/update of this measure? |
| yearly |

| Ad.9 When is the next scheduled review/update for this measure? |
| 08, 2011 |

| Ad.10 Copyright statement/disclaimers: |
| N/A |

| Ad.11-13 Additional Information web page URL or attachment: |
| URL N/A www.qualitynet.org for Measure Methodology report and Maintenance reports |

Date of Submission (MM/DD/YY): 12/14/2010
2d. Clinically necessary measure exclusions are identified and must be:

- supported by evidence of sufficient frequency of occurrence so that results are distorted without the exclusion;
 AND
- a clinically appropriate exception (e.g., contraindication) to eligibility for the measure focus;
 AND
- precisely defined and specified:
 - if there is substantial variability in exclusions across providers, the measure is specified so that exclusions are
 computable and the effect on the measure is transparent (i.e., impact clearly delineated, such as number of
 cases excluded, exclusion rates by type of exclusion);

if patient preference (e.g., informed decision-making) is a basis for exclusion, there must be evidence that it
strongly impacts performance on the measure and the measure must be specified so that the information about
patient preference and the effect on the measure is transparent (e.g., numerator category computed separately,
denominator exclusion category computed separately).