This form contains the measure information submitted by stewards. Blank fields indicate no information was provided. Attachments also may have been submitted and are provided to reviewers. The subcriteria and most of the footnotes from the evaluation criteria are provided in Word comments within the form and will appear if your cursor is over the highlighted area. Hyperlinks to the evaluation criteria and ratings are provided in each section.

TAP/Workgroup (if utilized): Complete all yellow highlighted areas of the form. Evaluate the extent to which each subcriterion is met. Based on your evaluation, summarize the strengths and weaknesses in each section.

Note: If there is no TAP or workgroup, the SC also evaluates the subcriteria (yellow highlighted areas).

Steering Committee: Complete all pink highlighted areas of the form. Review the workgroup/TAP assessment of the subcriteria, noting any areas of disagreement; then evaluate the extent to which each major criterion is met; and finally, indicate your recommendation for the endorsement. Provide the rationale for your ratings.

Evaluation ratings of the extent to which the criteria are met
C = Completely (unquestionably demonstrated to meet the criterion)
P = Partially (demonstrated to partially meet the criterion)
M = Minimally (addressed BUT demonstrated to only minimally meet the criterion)
N = Not at all (NOT addressed; OR incorrectly addressed; OR demonstrated to NOT meet the criterion)
NA = Not applicable (only an option for a few subcriteria as indicated)

<table>
<thead>
<tr>
<th>Measure Descriptive Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>De.1 Measure Title: Measurement of Iron Stores for Pediatric Patients</td>
</tr>
<tr>
<td>De.2 Brief description of measure: Percentage of all pediatric (<18 years old) hemodialysis and peritoneal dialysis patients prescribed an ESA at any time during the study period or who have a Hb<11.0 g/dL in at least one month of the study period for whom serum ferritin concentration and percent transferrin saturation (TSAT) are measured at least once in a three-month period</td>
</tr>
<tr>
<td>De.3 If included in a composite or paired with another measure, please identify composite or paired measure This measure is paired with Pediatric Anemia - Iron Therapy.</td>
</tr>
<tr>
<td>De.4 National Priority Partners Priority Area: Population health</td>
</tr>
<tr>
<td>De.5 IOM Quality Domain: Effectiveness</td>
</tr>
<tr>
<td>De.6 Consumer Care Need: Living with Illness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions for Consideration by NQF</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. The measure is in the public domain or an intellectual property (measure steward agreement) is signed. Public domain only applies to governmental organizations. All non-government organizations must sign a measure steward agreement even if measures are made publicly and freely available.</td>
</tr>
<tr>
<td>A.1 Do you attest that the measure steward holds intellectual property rights to the measure and the right to use aspects of the measure owned by another entity (e.g., risk model, code set)? Yes</td>
</tr>
<tr>
<td>A.2 Indicate if Proprietary Measure (as defined in measure steward agreement):</td>
</tr>
<tr>
<td>A.3 Measure Steward Agreement: Government entity and in the public domain - no agreement necessary</td>
</tr>
<tr>
<td>A.4 Measure Steward Agreement attached:</td>
</tr>
</tbody>
</table>

Rating: C=Completely; P=Partially; M=Minimally; N=Not at all; NA=Not applicable
B. The measure owner/steward verifies there is an identified responsible entity and process to maintain and update the measure on a schedule that is commensurate with the rate of clinical innovation, but at least every 3 years. Yes, information provided in contact section

C. The intended use of the measure includes both public reporting and quality improvement.
Purpose: Public reporting, Internal quality improvement

D. The requested measure submission information is complete. Generally, measures should be fully developed and tested so that all the evaluation criteria have been addressed and information needed to evaluate the measure is provided. Measures that have not been tested are only potentially eligible for endorsement. In that case, measure owners must verify that testing will be completed within 12 months of endorsement.
D.1 Testing: Yes, fully developed and tested
D.2 Have NQF-endorsed measures been reviewed to identify if there are similar or related measures? Yes

(for NQF staff use) Have all conditions for consideration been met?
Staff Notes to Steward (if submission returned): Met

Staff Notes to Reviewers (issues or questions regarding any criteria):

Staff Reviewer Name(s):

TAP/Workgroup Reviewer Name:

Steering Committee Reviewer Name:

1. IMPORTANCE TO MEASURE AND REPORT

Extent to which the specific measure focus is important to making significant gains in health care quality (safety, timeliness, effectiveness, efficiency, equity, patient-centeredness) and improving health outcomes for a specific high impact aspect of healthcare where there is variation in or overall poor performance. Measures must be judged to be important to measure and report in order to be evaluated against the remaining criteria. (evaluation criteria)

1a. High Impact:

1a.1 Demonstrated High Impact Aspect of Healthcare: Frequently performed procedure, High resource use, Severity of illness, Patient/societal consequences of poor quality

1a.2

1a.3 Summary of Evidence of High Impact: The use of ESAs and iron supplementation are effective therapies for correcting anemia in children with End Stage Renal Disease (ESRD) [1,2]. However, erythropoietin therapy will not result in an increase in hemoglobin if iron stores are deficient. As such, assessment of iron stores is important to ensure success of anemia management.

Based on the Third National Health and Nutrition Examination Survey (NHANES III) age- and gender-specific definition of anemia in the pediatric age group, where only two age and gender categories had hemoglobin cut-offs below 11 g/dL [3], the clinical Technical Expert Panel (TEP) agreed on a level of hemoglobin of 11 g/dL as the cut-off point for evaluation of iron deficiency. Furthermore, using 11g/dL instead of 10 g/dL, which is the cut-off used in the Pediatric Anemia - Lower Limit of Hemoglobin, allows for the earlier assessment of iron deficiency. Finally, there is no evidence that suggests that pediatric guidelines should differ from the adult population, especially since the corresponding adult measure is fully endorsed by the National Quality Forum (NQF). The only modification from the adult Clinical Performance Measure (CPM) is that reticulocyte hemoglobin content is excluded from the recommended assessment of iron stores since this has not been well-studied in the pediatric population [4]. There is no evidence to approach anemia
1b. Opportunity for Improvement

1b.1 Benefits (improvements in quality) envisioned by use of this measure: The use of ESA and iron supplementation are effective therapies for correcting anemia in children with End Stage Renal Disease (ESRD). However, erythropoietin therapy will not result in an increase in hemoglobin if iron stores are deficient. As such, assessment of iron stores is important to ensure success of anemia management.

1b.2 Summary of data demonstrating performance gap (variation or overall poor performance) across providers:

Patient-level analysis of data collected from October 2007 through December 2007 as part of the 2008 ESRD CPM Project showed that 92% of patients met the requirements for this measure. However, facility level analysis indicated that only 80% of facilities had all of their pediatric dialysis patients meeting the criteria for this measure.

1b.3 Citations for data on performance gap:

Internal analysis of CPM data

1b.4 Summary of Data on disparities by population group:

In an analysis of CPM data examining anemia management in the pediatric ESRD, gender, race and ethnicity were not found to be predictive of anemia [1]. However, the United States Renal Data System (USRDS) 2008 Annual Data Report (ADR) demonstrated that hemoglobin levels tended to vary by age group, and that hemoglobin levels are 0.5g/dL higher in white children as compared to African American children and other races [2].

1b.5 Citations for data on Disparities:

1c. Outcome or Evidence to Support Measure Focus

1c.1 Relationship to Outcomes

For non-outcome measures, briefly describe the relationship to desired outcome. For outcomes, describe why it is relevant to the target population: Although large scale clinical trials have not been conducted in the pediatric population, smaller scale observational and cohort studies have shown an association between anemia and poor outcomes including poor quality of life, cardiovascular disease, morbidity, and mortality.

1c.2-3. Type of Evidence:

Observational study, Evidence-based guideline

1c.4 Summary of Evidence

(as described in the criteria; for outcomes, summarize any evidence that healthcare services/care processes influence the outcome):

The pediatric 2006 KDOQI Clinical Practice Recommendation (CPR) 1.2.1 recommends that in the assessment of anemia, iron stores should be assessed by testing of serum ferritin and TSAT or content of hemoglobin in reticulocytes (CHr). Additionally, the 2006 KDOQI CPR 3.2.1.2 for pediatrics recommends differently in the pediatric population.

1c.5 Citations for Evidence of High Impact:

Comment [KP2]: 1b. Demonstration of quality/avoidance of harm that is a significant opportunity for improvement, i.e., data demonstrating considerable variation, or overall poor performance, in the quality of care across providers and/or population groups (disparities in care).

Comment [k3]: 1 Examples of data on opportunity for improvement include, but are not limited to: prior studies, epidemiologic data, measure data from pilot testing or implementation. If data are not available, the measure focus is systematically assessed (e.g., expert panel rating) and judged to be a quality problem.

Comment [k4]: 1c. The measure focus is:

- an outcome (e.g., morbidity, mortality, function, health-related quality of life) that is relevant to, associated with, a national health goal/priority, the condition, population, and/or care being addressed;

- OR

- if an intermediate outcome, process, structure, etc., there is evidence that supports the specific measure focus as follows:

 1. Intermediate outcome - evidence that the measured intermediate outcome (e.g., blood pressure, Hba1c) leads to improved health/avoidance of harm or cost/benefit.

 2. Process - evidence that the measured clinical or administrative process leads to improved health/avoidance of harm and if the measure focus is on one step in a multi-step care process, it measures the step that has the greatest effect on improving the specified desired outcome(s).

 3. Structure - evidence that the measured structure supports the consistent delivery of effective processes or access that lead to improved health/avoidance of harm or cost/benefit.

 4. Patient experience - evidence that an association exists between the measure of patient experience of health care and the outcomes, values, and preferences of individuals or the public.

 5. Efficiency - demonstration of an association between the measured resource use and level of performance with respect to one or more of the other five IOM aims of quality.

Comment [k5]: 4 Clinical care processes typically include multiple steps: assess -> identify problem/potential problem -> choose/plan intervention (with patient input) -> provide intervention -> evaluate impact on health status. If the measure focus is one step in such a multi-step process, the step with the greatest effect on the desired outcome should be selected as the focus of measurement. For example, although assessment of immunization status and recommending immunization are necessary steps, they are not sufficient to achieve the desired impact on health status - patients must be vaccinated to achieve immunity. This does not preclude consideration of measures of preventive screening interventions where there is a strong link with desired outcomes (e.g., ... [1]
that iron status tests should be performed at least every three months during stable ESA treatment or in patients with hemodialysis-dependent Chronic Kidney Disease (HD-CKD) not treated with an ESA. CPR 3.2.2 recommends results of iron status tests, hemoglobin level, and ESA dose should be interpreted together to guide iron therapy.

Serious renal dysfunction (SRD) leads to a deficiency in the hormone erythropoietin, resulting in anemia. The use of ESAs and iron supplementation are effective therapies for correcting anemia in children with ESRD [1,2]. However, erythropoietin therapy will not result in an increase in hemoglobin if iron stores are deficient. Indeed, iron deficiency has been shown to be a major case of anemia that is resistant to ESAs [3]. As such, assessment of iron stores is important to ensure success of anemia management.

Furthermore, a meta-analysis demonstrated that IV iron is effective in improving reported outcomes [4]. Furthermore, this measure is similar to the NQF endorsed adult CPM: Assessment of Iron Stores.

1c.5 Rating of strength/quality of evidence (also provide narrative description of the rating and by whom):
The pediatric adequacy clinical TEP rated the strength of this measure as high.

1c.6 Method for rating evidence: The clinical TEP followed similar methods of evidence assessment as that used by the KDOQI clinical practice guidelines.

1c.7 Summary of Controversy/Contradictory Evidence: The clinical TEP discussed the appropriate hemoglobin cut-off for monitoring iron stores, given that the other related anemia measures are based on a hemoglobin cut-off of 10g/dL, whereas this measure proposes the use of 11g/dL. The level of hemoglobin of 11 g/dL as the cut-off point for evaluation of iron deficiency is based on the NHANES III age- and gender-specific definition of anemia in the pediatric age group (Hollowell 2005), where only two age and gender categories had cut-off points below 11g/dL. Furthermore, using 11g/dL instead of 10 g/dL, allows for the earlier assessment of iron deficiency.

1c.9 Quote the Specific guideline recommendation (including guideline number and/or page number): 2006 KDOQI Clinical Practice Recommendations for Anemia in Chronic Kidney Disease in Children

CPR FOR PEDIATRICS 1.2: EVALUATION OF ANEMIA IN CKD
1.2.1 In the opinion of the Work Group, initial assessment of anemia should include the following tests: (APPLICABLE TO CHILDREN, BUT NEEDS MODIFICATION)
1.2.1.1 A CBC including—in addition to the Hb concentration—red blood cell indices (MCH, MCV, MCHC), white blood cell count and differential and platelet count.
1.2.1.2 Absolute reticulocyte count.
1.2.1.3 Serum ferritin to assess iron stores.
1.2.1.4 ADULT CPR
Serum TSAT or CHR to assess adequacy of iron for erythropoiesis.

PEDIATRIC CPR
In the pediatric patient, serum TSAT to assess adequacy of iron for erythropoiesis.

CPR FOR PEDIATRICS 3.2: USING IRON AGENTS
3.2.1 Frequency of iron status tests (Fully Applicable to Children)
In the opinion of the Work Group, iron status tests should be performed as follows:
3.2.1.2 At least every 3 months during stable ESA treatment or in patients with HD-CKD not treated with an ESA
3.2.2 Interpretation of iron status tests: (FULLY APPLICABLE TO CHILDREN)
In the opinion of the Work Group, results of iron status tests, Hb level, and ESA dose should be interpreted together to guide iron therapy.

Please note that these are clinical practice recommendations and are therefore defined in the KDOQI document as "expert opinion" based recommendations.

1c.10 Clinical Practice Guideline Citation: Clinical Practice Recommendation for Anemia in Chronic Kidney Disease in Children; KDOQI Clinical Practice Guideline and Clinical Practice Recommendations for Anemia in Chronic Kidney Disease: 2006.

1c.11 National Guideline Clearinghouse or other URL: N/A

1c.12 Rating of strength of recommendation (also provide narrative description of the rating and by whom):
The KDOQI CPRs are based on Work Group Consensus.

1c.13 Method for rating strength of recommendation (If different from USPSTF system, also describe rating and how it relates to USPSTF):
The method used is the same as was used in developing the 2006 KDOQI guidelines, in which experts decided which recommendations were supported by evidence and which were supported by consensus of Work Group opinion. Evidence-based guideline recommendations were graded as strong or moderate or weak. This approach is consistent with the United States Preventive Services Task Force (USPSTF) grading method.

1c.14 Rationale for using this guideline over others:
There are no other known pediatric anemia guidelines. The KDOQI clinical practice guidelines and recommendations are widely utilized by the nephrology community.

TAP/Workgroup: What are the strengths and weaknesses in relation to the subcriteria for Importance to Measure and Report?

Steering Committee: Was the threshold criterion, Importance to Measure and Report, met?
Rationale:

2. SCIENTIFIC ACCEPTABILITY OF MEASURE PROPERTIES

Extent to which the measure, as specified, produces consistent (reliable) and credible (valid) results about the quality of care when implemented. (Evaluation criteria)

2a. MEASURE SPECIFICATIONS

S.1 Do you have a web page where current detailed measure specifications can be obtained?
S.2 If yes, provide web page URL:

2a. Precisely Specified

2a.1 Numerator Statement (Brief, text description of the numerator - what is being measured about the target population, e.g. target condition, event, or outcome):
Number of dialysis patients in the denominator for whom serum ferritin concentration and percent transferrin saturation (TSAT) are measured at least once in a three-month study period for all hemodialysis and peritoneal dialysis patients.

2a.2 Numerator Time Window (The time period in which cases are eligible for inclusion in the numerator):
Three months from the start of the reporting period.

2a.3 Numerator Details (All information required to collect/calculate the numerator, including all codes, logic, and definitions):

Rating: C=Completely; P=Partially; M=Minimally; N=Not at all; NA=Not applicable
2a.4 Denominator Statement (Brief, text description of the denominator - target population being measured):

All pediatric (<18 years old) hemodialysis and peritoneal dialysis patients prescribed an erythropoiesis-stimulating agent (ESA) at any time during the study period or who have a hemoglobin <11.0 g/dL in at least one month of the study period. The hemoglobin value reported for the end of each study period (end-of-month hemoglobin) is used for this calculation.

2a.5 Target population gender: Female, Male

2a.6 Target population age range: Pediatric patients less than 18 years old.

2a.7 Denominator Time Window (The time period in which cases are eligible for inclusion in the denominator):

Three months from the start of the reporting period.

2a.8 Denominator Details (All information required to collect/calculate the denominator - the target population being measured - including all codes, logic, and definitions):

Patients are counted as being in the facility for the entire three-month study period if “Admit Date” to the specified facility is prior or equal to the first day of the study period, AND the patient has not been discharged (“Discharge Date” is null or blank), OR “Discharge Date” from the facility is greater than or equal to the last day of the study period. The patient’s age will be determined by subtracting the patient’s date of birth from the first day of the reporting month. Patients who are in the facility for the three-month study period and with age<18 years will be included in the denominator if an ESA prescribed=“Yes” OR the patient’s hemoglobin in any month in the 3 month period is less than 11 g/dL.

2a.9 Denominator Exclusions (Brief text description of exclusions from the target population):

Patients who are not in the facility for the entire three-month study period.

2a.10 Denominator Exclusion Details (All information required to collect exclusions to the denominator, including all codes, logic, and definitions):

See denominator exclusions.

2a.11 Stratification Details/Variables (All information required to stratify the measure including the stratification variables, all codes, logic, and definitions):

No stratification is required for this measure.

2a.12-13 Risk Adjustment Type: No risk adjustment necessary

2a.14 Risk Adjustment Methodology/Variables (List risk adjustment variables and describe conceptual models, statistical models, or other aspects of model or method):

N/A

2a.15-17 Detailed risk model available Web page URL or attachment:

2a.18-19 Type of Score: Rate/proportion

2a.20 Interpretation of Score: Better quality = Higher score

2a.21 Calculation Algorithm (Describe the calculation of the measure as a flowchart or series of steps):

Patients are counted as being in the facility for the entire three-month study period if “Admit Date” to the specified facility is prior or equal to the first day of the study period, AND the patient has not been discharged (“Discharge Date” is null or blank), OR “Discharge Date” from the facility is greater than or equal to the last day of the study period. The patient’s age will be determined by subtracting the patient’s date of birth from the first day of the reporting month. Patients who are in the facility for the three-month study period and with age<18 years will be included in the denominator if an ESA prescribed=“Yes” OR the patient’s hemoglobin in any month in the 3 month period is less than 11 g/dL. In order to be counted in the numerator, patients in the denominator must have “Serum Ferritin”, “Serum Ferritin Collection Date”, “Iron Saturation (TSAT) Percentage”, and “Iron Saturation (TSAT) Percentage Collection Date” populated in at least 1 of the 3 reporting months.

Comment [k9]: 11 Risk factors that influence outcomes should not be specified as exclusions.

12 Patient preference is not a clinical exception to eligibility and can be influenced by provider interventions.
2a.22 Describe the method for discriminating performance (e.g., significance testing):
The performance of the facility will be compared to state, Network and national performance.

2a.23 Sampling (Survey) Methodology If measure is based on a sample (or survey), provide instructions for obtaining the sample, conducting the survey and guidance on minimum sample size (response rate):
N/A

2a.24 Data Source (Check the source(s) for which the measure is specified and tested)
Electronic clinical data

2a.25 Data source/data collection instrument (Identify the specific data source/data collection instrument, e.g. name of database, clinical registry, collection instrument, etc.):
CROWNWeb (Consolidated Renal Operations in a Web Enabled Network)

2a.26-28 Data source/data collection instrument reference web page URL or attachment: URL
http://www.projectcrownweb.org/crown/index.php

2a.29-31 Data dictionary/code table web page URL or attachment: URL

2a.32-35 Level of Measurement/Analysis (Check the level(s) for which the measure is specified and tested)
Facility/Agency

2a.36-37 Care Settings (Check the setting(s) for which the measure is specified and tested)
Dialysis Facility

2a.38-41 Clinical Services (Healthcare services being measured, check all that apply)
Dialysis

2b. Reliability testing

2b.1 Data/sample (description of data/sample and size): For the 2008 ESRD CPM project, inter-rater reliability was assessed using facility abstracted and Network re-abstracted data. A total of 301 randomly selected medical records from both adult and pediatric patients were included in the analysis.

2b.2 Analytic Method (type of reliability & rationale, method for testing):
To analyze the inter-rater reliability of the ESRD CPM data agreement rates, levels of concurrence, and kappa statistics were computed. Agreement rates were calculated for continuous data, and kappa statistics and levels of concurrence were jointly used to analyze categorical data. For measures based on target values, (e.g. hemoglobin<11 g/dL), non-missing reliability estimates are assessed. Missing vs. non-missing reliability estimates are assessed for variables in which the presence/absence is evaluated for the measure (e.g. TSAT and serum ferritin). ESA use was not evaluated in this reliability report.

2b.3 Testing Results (reliability statistics, assessment of adequacy in the context of norms for the test conducted):
Reliability statistics were calculated separately for hemodialysis and peritoneal dialysis patients. Among hemodialysis patients, the average kappa statistic for hemoglobin<11 g/dL (non-missing data) was 0.95. The average level of concurrence was 99%. The missing vs. non-missing average kappa statistic for serum ferritin was 0.94 and for TSAT was 0.91. The average level of concurrence was 98% for both for serum ferritin and TSAT.

Among peritoneal dialysis patients, the average kappa statistic (non-missing data) for Hemoglobin<11 g/dL was 0.96. The missing vs. non-missing average kappa statistic for serum ferritin was 0.80 and for TSAT was 0.75. The average level of concurrence was 92% for serum ferritin and 91% for TSAT.

2c. Validity testing

Comment [KP10]: 2b. Reliability testing demonstrates the measure results are repeatable, producing the same results a high proportion of the time when assessed in the same population in the same time period.

Comment [K11]: 8 Examples of reliability testing include, but are not limited to: inter-rater/abstractor or intra-rater/abstractor studies; internal consistency for multi-item scales; test-retest for survey items. Reliability testing may address the data items or final measure score.

Comment [KP12]: 2c. Validity testing demonstrates the measure reflects the quality of care provided, adequately distinguishing good and poor quality. If face validity is the only validity addressed, it is systematically assessed.
2c. Risk Adjustment for Outcomes/Resource Use Measures

<table>
<thead>
<tr>
<th>Data/sample (description of data/sample and size):</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytic Method (type & rationale):</td>
<td>N/A</td>
</tr>
<tr>
<td>Testing Results (statistical results, assessment of adequacy in the context of norms for the test conducted):</td>
<td>N/A</td>
</tr>
</tbody>
</table>

2d. Exclusions Justified

<table>
<thead>
<tr>
<th>Summary of Evidence supporting exclusion(s):</th>
<th>Exclusions are not supported by evidence. However, they are limited to those with a compelling clinical rationale and are precisely defined.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citations for Evidence:</td>
<td>N/A</td>
</tr>
<tr>
<td>Data/sample (description of data/sample and size):</td>
<td>N/A</td>
</tr>
<tr>
<td>Analytic Method (type analysis & rationale):</td>
<td>N/A</td>
</tr>
<tr>
<td>Testing Results (e.g., frequency, variability, sensitivity analyses):</td>
<td>N/A</td>
</tr>
</tbody>
</table>

2e. Risk Adjustment for Outcomes/Resource Use Measures

<table>
<thead>
<tr>
<th>Data/sample (description of data/sample and size):</th>
<th>No risk adjustments are necessary for this measure.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytic Method (type of risk adjustment, analysis, & rationale):</td>
<td>N/A</td>
</tr>
<tr>
<td>Testing Results (risk model performance metrics):</td>
<td>N/A</td>
</tr>
</tbody>
</table>

2f. Identification of Meaningful Differences in Performance

<table>
<thead>
<tr>
<th>Data/sample from Testing or Current Use (description of data/sample and size):</th>
<th>Data from the ESRD CPM Project were used to perform analyses on determining differences in performance in facilities with pediatric hemodialysis and peritoneal dialysis patients. In the 2008 study, CPM data were collected on all pediatric hemodialysis patients from October 2007 through December 2007 from a total of 317 facilities.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods to identify statistically significant and practically/meaningfully differences in performance (type of analysis & rationale):</td>
<td>Facility level performance was evaluated by the calculation of facility percentages.</td>
</tr>
<tr>
<td>Provide Measure Scores from Testing or Current Use (description of scores, e.g., distribution by quartile, mean, median, SD, etc.; identification of statistically significant and meaningfully differences in performance):</td>
<td>CPM facility level analyses indicated that only 80% of facilities had all pediatric dialysis patients meeting the criteria for this measure.</td>
</tr>
</tbody>
</table>
2g. Comparability of Multiple Data Sources/Methods

2g.1 Data/sample (description of data/sample and size):
CROWNWeb. Phase 1 and 2 CROWNWeb Beta Testing Data: Data are based on the 18 facilities participating in Phase 1 and the 180 facilities participating in Phase 2 plus about 3000 additional batch-submission facilities in CROWNWeb. These data include about 60% of dialysis facilities and 75% of dialysis patients and are heavily weighted towards large dialysis organization facilities.

2g.2 Analytic Method (type of analysis & rationale):
Multiple data sources are not allowed for this measure, and therefore testing is not needed.

2g.3 Testing Results (e.g., correlation statistics, comparison of rankings):
N/A

2h. Disparities in Care

2h.1 If measure is stratified, provide stratified results (scores by stratified categories/cohorts):
N/A

2h.2 If disparities have been reported/identified, but measure is not specified to detect disparities, provide follow-up plans:
Stratification by age group, race, and gender may be considered given disparities observed in hemoglobin levels as described above.

TAP/Workgroup: What are the strengths and weaknesses in relation to the subcriteria for Scientific Acceptability of Measure Properties?

<table>
<thead>
<tr>
<th>Evaluation Rating</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C</td>
</tr>
</tbody>
</table>

3. USABILITY

Eval Rating

3a. Meaningful, Understandable, and Useful Information

3a.1 Current Use:
Not in use but testing completed

3a.2 Use in a public reporting initiative (disclosure of performance results to the public at large) (If used in a public reporting initiative, provide name of initiative(s), locations, Web page URL(s). If not publicly reported, state the plans to achieve public reporting within 3 years):
This measure is currently not in use for pediatric patients, but a similar measure is in use for the adult population and can be found in the CPM Project 2008 Annual Report. URL: www.cms.hhs.gov/CPMProject.

3a.3 If used in other programs/initiatives (If used in quality improvement or other programs/initiatives, name of initiative(s), locations, Web page URL(s). If not used for QI, state the plans to achieve use for QI within 3 years):
An analysis of patients <18 years of age in the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS) found that 68% of patients were anemic. A total of 77.3% of patients not anemic were receiving oral and/or intravenous iron, while 72.9% of anemic patients were receiving iron (P<0.05). Additionally, results showed anemia was associated with a 52% higher risk of death, (Warady B Ho M. Morbidity and mortality in children with anemia at initiation of dialysis. Pediatr Nephrol 18:1055-1062, 2003).

Testing of Interpretability (Testing that demonstrates the results are understood by the potential users for public reporting and quality improvement)
Testing of interpretability has not been performed.

Comments

Comment [KP20]: 2g. If multiple data sources/methods are allowed, there is demonstration they produce comparable results.

Comment [KP21]: 2h. If disparities in care have been identified, measure specifications, scoring, and analysis allow for identification of disparities through stratification of results (e.g., by race, ethnicity, socioeconomic status, gender); OR rationale/data justifies why stratification is not necessary or not feasible.

Comment [KP22]: 3a. Demonstration that information produced by the measure is meaningful, understandable, and useful to the intended audience(s) for both public reporting (e.g., focus group, cognitive testing) and informing quality improvement (e.g., quality improvement initiatives). An important outcome that may not have an identified improvement strategy still can be useful for informing quality improvement by identifying the need for and stimulating new approaches to improvement.
3a.5 Methods (e.g., focus group, survey, QI project):
N/A

3a.6 Results (qualitative and/or quantitative results and conclusions):
N/A

3b/3c. Relation to other NQF-endorsed measures

3b.1 NQF # and Title of similar or related measures:
0252 Adult ESRD- Anemia Management CPM IIa- Assessment of Iron Stores

(for NQF staff use) Notes on similar/related endorsed or submitted measures:

3b. Harmonization

If this measure is related to measure(s) already endorsed by NQF (e.g., same topic, but different target population/setting/data source or different topic but same target population):

3b.2 Are the measure specifications harmonized? If not, why?
The measure specifications are partially harmonized with the adult NQF endorsed measure. The pediatric measure uses similar but not identical language to the adult measure for two reasons; (1) The use of reticulocyte Hb content (Chr) as a measure of iron stores has not been adequately tested in the pediatric population and should be excluded from the measure description and (2) The measurement period of 3 months applies to both hemodialysis and peritoneal dialysis pediatric patients whereas in the adult measure, 3 months is used as the reporting period for hemodialysis patients and 6 months for peritoneal dialysis patients. The clinical TEP discussed that pediatric peritoneal dialysis patients would appropriately have other laboratory tests performed at a minimum interval of 3 months, and therefore the 3 month frequency should apply to both peritoneal dialysis and hemodialysis pediatric ESRD patients.

3c. Distinctive or Additive Value

3c.1 Describe the distinctive, improved, or additive value this measure provides to existing NQF-endorsed measures:
This measure is for pediatric (<18 years) patients only. The NQF endorsed measure is for patients >=18 years.

5.1 If this measure is similar to measure(s) already endorsed by NQF (i.e., on the same topic and the same target population), Describe why it is a more valid or efficient way to measure quality:
This measure is for pediatric (<18 years) patients only. The NQF endorsed measure is for patients >=18 years.

TAP/Workgroup: What are the strengths and weaknesses in relation to the subcriteria for Usability?

Steering Committee: Overall, to what extent was the criterion, Usability, met?
Rationale:

4. FEASIBILITY

Extent to which the required data are readily available, retrievable without undue burden, and can be implemented for performance measurement. (evaluation criteria)

4a. Data Generated as a Byproduct of Care Processes

4a.1-2 How are the data elements that are needed to compute measure scores generated?
Data generated as byproduct of care processes during care delivery (Data are generated and used by healthcare personnel during the provision of care, e.g., blood pressure, lab value, medical condition)

4b. Electronic Sources

4b.1 Are all the data elements available electronically? (elements that are needed to compute measure scores)

Rating: C=Completely; P=Partially; M=Minimally; N=Not at all; NA=Not applicable

Comment [KP23]: 3b. The measure specifications are harmonized with other measures, and are applicable to multiple levels and settings.

Comment [k24]: 16 Measure harmonization refers to the standardization of specifications for similar measures on the same topic (e.g., influenza immunization of patients in hospitals or nursing homes), or related measures for the same target population (e.g., eye exam and HbA1c for patients with diabetes), or definitions applicable to many measures (e.g., age designation for children) so that they are uniform or compatible, unless differences are dictated by the evidence. The dimensions of harmonization can include numerator, denominator, exclusions, and data source and collection instructions. The extent of harmonization depends on the relationship of the measures, the evidence for the specific measure focus, and differences in data sources.

Comment [KP25]: 3c. Review of existing endorsed measures and measure sets demonstrates that the measure provides a distinctive or additive value to existing NQF-endorsed measures (e.g., provides a more complete picture of quality for a particular condition or aspect of healthcare, is a more valid or efficient way to measure).

Comment [KP26]: 4a. For clinical measures, required data elements are routinely generated concurrent with and as a byproduct of care processes during care delivery. (e.g., BP recorded in the electronic record, not abstracted from the record later by other personnel; patient self-assessment tools, e.g., depression scale; lab values, meds, etc.)

Comment [KP27]: 4b. The required data elements are available in electronic sources. If the required data are not in existing electronic sources, a credible, near-term path to electronic collection by most providers is specified and clinical data elements are specified for transition to the electronic health record.
Scores are in defined, computer-readable fields, e.g., electronic health record, electronic claims. Yes

4b.2 If not, specify the near-term path to achieve electronic capture by most providers.

4c. Exclusions

4c.1 Do the specified exclusions require additional data sources beyond what is required for the numerator and denominator specifications? No

4c.2 If yes, provide justification.

4d. Susceptibility to Inaccuracies, Errors, or Unintended Consequences

4d.1 Identify susceptibility to inaccuracies, errors, or unintended consequences of the measure and describe how these potential problems could be audited. If audited, provide results.

Since the data elements required for this measure are already being collected as part of the ESRD CPM project, facilities are familiar with data required for this measure. This reduces the likelihood of errors in the data collection process.

4d.2 Costs to implement the measure (costs of data collection, fees associated with proprietary measures): The estimated data collection burden and associated cost estimate is presented in Tables 1-3 in the Federal Register. Vol. 73, No. 73 page 20469. URL: http://www.cms.gov/CFCsAndCoPs/downloads/ESRDfinalrule0415.pdf.

4e. Data Collection Strategy/Implementation

4e.1 Describe what you have learned/modified as a result of testing and/or operational use of the measure regarding data collection, availability of data/missing data, timing/frequency of data collection, patient confidentiality, time/cost of data collection, other feasibility/implementaion issues:

Since the data elements required for this measure are already being collected as part of the ESRD CPM project, facilities are familiar with data required for this measure. This reduces the likelihood of errors in the data collection process.

4e.2 Evidence for costs:

See above reference to Federal Register.

4e.4 Business case documentation: No formal studies evaluating the cost-effectiveness of monitoring iron stores in the pediatric ESRD population have been published. However, anemia has been associated with increased hospitalization rates in this population. Given that hospitalization is associated with increased costs of care, it is possible that efforts to reduce the prevalence of anemia in the pediatric ESRD population (including the maintenance of adequate iron stores) may potentially reduce hospitalization rates, and may therefore be cost-effective.

TAP/Workgroup: What are the strengths and weaknesses in relation to the subcriteria for Feasibility?

Steering Committee: Overall, to what extent was the criterion, Feasibility, met?

Rationale:

RECOMMENDATION

(for NQF staff use) Check if measure is untested and only eligible for time-limited endorsement.

Rating: C=Completely; P=Partially; M=Minimally; N=Not at all; NA=Not applicable
Steering Committee: Do you recommend for endorsement?
Comments:

<table>
<thead>
<tr>
<th>Y</th>
<th>N</th>
<th>A</th>
</tr>
</thead>
</table>

CONTACT INFORMATION

Co.1 Measure Steward (Intellectual Property Owner)
Organization
Centers for Medicare & Medicaid Services, 7500 Security Boulevard, Baltimore, Maryland, 21244

Co.2 Point of Contact
Thomas, Dudley, Thomas.Dudley@cms.hhs.gov, 410-786-1442-

Measure Developer If different from Measure Steward
Co.3 Organization
Arbor Research/UM-KECC, 315 W. Huron Street, Ann Arbor, Michigan, 48103

Co.4 Point of Contact
Adrienne, Janney, adrienne.janney@arborresearch.org, 734-665-4108-

Co.5 Submitter If different from Measure Steward POC
Thomas, Dudley, Thomas.Dudley@cms.hhs.gov, 410-786-1442-, Centers for Medicare & Medicaid Services

Co.6 Additional organizations that sponsored/participated in measure development

ADDITIONAL INFORMATION

Workgroup/Expert Panel involved in measure development
Ad.1 Provide a list of sponsoring organizations and workgroup/panel members’ names and organizations.
Describe the members’ role in measure development.
Dr. Bradley Warady, panel chair (University of Missouri, Kansas City School of Medicine, Kansas City, MO)
Dr. Carolyn Abitbol (University of Miami, Holtz Children’s Hospital, Miami, FL)
Dr. Eileen Brewer (Baylor College of Medicine/Texas Children’s Hospital, Houston, TX)
Dr. Stuart Goldstein (Baylor College of Medicine/Texas Children’s Hospital, Houston, TX)
Dr. Alicia Neu (Johns Hopkins Medical Institution, Baltimore, MD)
Dr. Irene Restaino (Children’s Hospital of The King Daughters, Norfolk, VA)
Dr. Douglas Silverstein (Children’s National Medical Center, Washington, D.C.)
Dr. Sylvia Ramirez, Moderator (Arbor Research Collaborative for Health)
Alissa Kapke, Analyst (Arbor Research Collaborative for Health)
Jeffrey Pearson, Analytic Manager, (Arbor Research Collaborative for Health)

Ad.2 If adapted, provide name of original measure:
Ad.3-5 If adapted, provide original specifications URL or attachment

Measure Developer/Steward Updates and Ongoing Maintenance
Ad.6 Year the measure was first released:
Ad.7 Month and Year of most recent revision:
Ad.8 What is your frequency for review/update of this measure?
Three years
Ad.9 When is the next scheduled review/update for this measure?
2013

Ad.10 Copyright statement/disclaimers:

Ad.11 -13 Additional Information web page URL or attachment:

Date of Submission (MM/DD/YY): 09/28/2010
Clinical care processes typically include multiple steps: assess → identify problem/potential problem → choose/plan intervention (with patient input) → provide intervention → evaluate impact on health status. If the measure focus is one step in such a multi-step process, the step with the greatest effect on the desired outcome should be selected as the focus of measurement. For example, although assessment of immunization status and recommending immunization are necessary steps, they are not sufficient to achieve the desired impact on health status - patients must be vaccinated to achieve immunity. This does not preclude consideration of measures of preventive screening interventions where there is a strong link with desired outcomes (e.g., mammography) or measures for multiple care processes that affect a single outcome.

Clinically necessary measure exclusions are identified and must be:
• supported by evidence of sufficient frequency of occurrence so that results are distorted without the exclusion; AND
• a clinically appropriate exception (e.g., contraindication) to eligibility for the measure focus; AND
• precisely defined and specified:
 – if there is substantial variability in exclusions across providers, the measure is specified so that exclusions are computable and the effect on the measure is transparent (i.e., impact clearly delineated, such as number of cases excluded, exclusion rates by type of exclusion);
if patient preference (e.g., informed decision-making) is a basis for exclusion, there must be evidence that it strongly impacts performance on the measure and the measure must be specified so that the information about patient preference and the effect on the measure is transparent (e.g., numerator category computed separately, denominator exclusion category computed separately).

For outcome measures and other measures (e.g., resource use) when indicated:
• an evidence-based risk-adjustment strategy (e.g., risk models, risk stratification) is specified and is based on patient clinical factors that influence the measured outcome (but not disparities in care) and are present at start of care; OR rationale/data support no risk adjustment.

Risk models should not obscure disparities in care for populations by including factors that are associated with differences/inequalities in care such as race, socioeconomic status, gender (e.g., poorer treatment outcomes of African American men with prostate cancer, inequalities in treatment for CVD risk factors between men and women). It is preferable to stratify measures by race and socioeconomic status rather than adjusting out differences.

With large enough sample sizes, small differences that are statistically significant may or may not be practically or clinically meaningful. The substantive question may be, for example, whether a statistically significant difference of one percentage point in the percentage of patients who received smoking cessation counseling (e.g., 74% v. 75%) is clinically meaningful; or whether a statistically significant difference of $25 in cost for an episode of care (e.g., $5,000 v. $5,025) is practically meaningful. Measures with overall poor performance may not demonstrate much variability across providers.