This form contains the measure information submitted by stewards. Blank fields indicate no information was provided. Attachments also may have been submitted and are provided to reviewers. The subcriteria and most of the footnotes from the evaluation criteria are provided in Word comments within the form and will appear if your cursor is over the highlighted area. Hyperlinks to the evaluation criteria and ratings are provided in each section.

TAP/Workgroup (if utilized): Complete all yellow highlighted areas of the form. Evaluate the extent to which each subcriterion is met. Based on your evaluation, summarize the strengths and weaknesses in each section.

Note: If there is no TAP or workgroup, the SC also evaluates the subcriteria (yellow highlighted areas).

Steering Committee: Complete all pink highlighted areas of the form. Review the workgroup/TAP assessment of the subcriteria, noting any areas of disagreement; then evaluate the extent to which each major criterion is met; and finally, indicate your recommendation for the endorsement. Provide the rationale for your ratings.

Evaluation ratings of the extent to which the criteria are met
C = Completely (unquestionably demonstrated to meet the criterion)
P = Partially (demonstrated to partially meet the criterion)
M = Minimally (addressed BUT demonstrated to only minimally meet the criterion)
N = Not at all (NOT addressed; OR incorrectly addressed; OR demonstrated to NOT meet the criterion)
NA = Not applicable (only an option for a few subcriteria as indicated)

MEASURE DESCRIPTIVE INFORMATION

<table>
<thead>
<tr>
<th>De.1 Measure Title:</th>
<th>Perforated Appendix Admission Rate (PQI 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>De.2 Brief description of measure:</td>
<td>Percentage of admissions for appendicitis within county with perforated appendix.</td>
</tr>
<tr>
<td>1.1-2 Type of Measure:</td>
<td>Outcome</td>
</tr>
<tr>
<td>De.3 If included in a composite or paired with another measure, please identify composite or paired measure</td>
<td>Not applicable</td>
</tr>
<tr>
<td>De.4 National Priority Partners Priority Area:</td>
<td>Population health, Safety</td>
</tr>
<tr>
<td>De.5 IOM Quality Domain:</td>
<td>Effectiveness</td>
</tr>
<tr>
<td>De.6 Consumer Care Need:</td>
<td>Staying healthy</td>
</tr>
</tbody>
</table>

CONDITIONS FOR CONSIDERATION BY NQF

Four conditions must be met before proposed measures may be considered and evaluated for suitability as voluntary consensus standards:

A. The measure is in the public domain or an intellectual property (measure steward agreement) is signed. **Public domain only applies to governmental organizations. All non-government organizations must sign a measure steward agreement even if measures are made publicly and freely available.**

A.1 Do you attest that the measure steward holds intellectual property rights to the measure and the right to use aspects of the measure owned by another entity (e.g., risk model, code set)? **Yes**

A.2 Indicate if Proprietary Measure (as defined in measure steward agreement):

A.3 Measure Steward Agreement: **Government entity and in the public domain - no agreement necessary**

A.4 Measure Steward Agreement attached:

B. The measure owner/steward verifies there is an identified responsible entity and process to maintain and update the measure on a schedule that is commensurate with the rate of clinical innovation, but at least
<table>
<thead>
<tr>
<th>Rating:</th>
<th>C=Completely; P=Partially; M=Minimally; N=Not at all; NA=Not applicable</th>
</tr>
</thead>
</table>

C. The intended use of the measure includes both public reporting and quality improvement.

Purpose: Public reporting, Internal quality improvement

D. The requested measure submission information is complete. Generally, measures should be fully developed and tested so that all the evaluation criteria have been addressed and information needed to evaluate the measure is provided. Measures that have not been tested are only potentially eligible for a time-limited endorsement and in that case, measure owners must verify that testing will be completed within 12 months of endorsement.

D.1 Testing: Yes, fully developed and tested

D.2 Have NQF-endorsed measures been reviewed to identify if there are similar or related measures? Yes

(for NQF staff use) Have all conditions for consideration been met?

Staff Notes to Steward (if submission returned):

Staff Notes to Reviewers (issues or questions regarding any criteria):

1c.8 Citations for Evidence: Updated citations will be presented at the in-person meeting.

Staff Reviewer Name(s): Alexis Forman

1. IMPORTANCE TO MEASURE AND REPORT

Extent to which the specific measure focus is important to making significant gains in health care quality (safety, timeliness, effectiveness, efficiency, equity, patient-centeredness) and improving health outcomes for a specific high impact aspect of healthcare where there is variation in or overall poor performance. Measures must be judged to be important to measure and report in order to be evaluated against the remaining criteria. (evaluation criteria)

1a. High Impact

(for NQF staff use) **Specific NPP goal:** Not related to a specific NPP goal.

1a.1 **Demonstrated High Impact Aspect of Healthcare:** High resource use, Patient/societal consequences of poor quality

1a.2

1a.3 **Summary of Evidence of High Impact:** Perforated appendix occurs in one-fourth to one-third of hospitalized acute appendicitis patients [1] Approximately 280,000 appendectomies are performed each year in the United States. [2] Most are performed as emergencies to avoid the complications of perforated appendicitis; an entity believed to result from delay in surgical removal of the appendix after the appendix has become inflamed. The fear of appendicitis complications results in more emergency general surgical operations than any other disease. [3] Negative exploration rates as high as 30% are considered acceptable for women presenting with lower abdominal pain. [4] A retrospective analysis for all patients 18 y of age and over with acute appendicitis between July 1, 2005 and December 31, 2008 at a teaching hospital identified 1003 patients with acute appendicitis of whom 239 (23.8%) had perforated appendix. Patients with public insurance were significantly more likely to have perforated disease (P < 0.001) as were patients in the older age groups (41-64 and =65) (35.8% and 38.24%, respectively, versus 19.2% for those 18-40; P < 0.001). The patients who presented with perforation had a greater length of stay (2.71 ± 2.14 versus 6.04 ± 3.91 d, P < 0.001). [5]

1a.4 **Citations for Evidence of High Impact:** Updated citations will be presented in the May Steering Committee meeting

1b. Opportunity for Improvement

1b.1 Benefits (improvements in quality) envisioned by use of this measure: Timely diagnosis and treatment may reduce the incidence of perforated appendix, and lower rates represent better quality care.

1b.2 Summary of data demonstrating performance gap (variation or overall poor performance) across providers:
Adjusted per 100,000 rates by patient and hospital characteristics, 2007

<table>
<thead>
<tr>
<th>Location</th>
<th>Mean</th>
<th>Standard error</th>
<th>P-value: Relative to Northeast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast</td>
<td>246.2854.719</td>
<td>4.719</td>
<td>1.000</td>
</tr>
<tr>
<td>Midwest</td>
<td>293.2244.786</td>
<td>4.786</td>
<td>0.000</td>
</tr>
<tr>
<td>South</td>
<td>289.0073.677</td>
<td>3.677</td>
<td>0.000</td>
</tr>
<tr>
<td>West</td>
<td>286.8724.341</td>
<td>4.341</td>
<td>0.000</td>
</tr>
</tbody>
</table>

1b.3 Citations for data on performance gap:

1b.4 Summary of Data on disparities by population group:
Adjusted per 100,000 rates by patient characteristics, 2007

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Standard error</th>
<th>Age: for conditions affecting any age</th>
</tr>
</thead>
<tbody>
<tr>
<td>203.578</td>
<td>3.449</td>
<td>18-44</td>
</tr>
<tr>
<td>390.937</td>
<td>4.99</td>
<td>45-64</td>
</tr>
<tr>
<td>516.977</td>
<td>7.304</td>
<td>65 and over</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Standard error</th>
<th>Age: for conditions affecting elderly</th>
</tr>
</thead>
<tbody>
<tr>
<td>483.585</td>
<td>11.929</td>
<td>65-69</td>
</tr>
<tr>
<td>494.937</td>
<td>14.249</td>
<td>70-74</td>
</tr>
<tr>
<td>535.493</td>
<td>15.712</td>
<td>75-79</td>
</tr>
<tr>
<td>546.261</td>
<td>18.545</td>
<td>80-84</td>
</tr>
<tr>
<td>593.997</td>
<td>22.816</td>
<td>85 and over</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Standard error</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>303.352</td>
<td>3.045</td>
<td>Male</td>
</tr>
<tr>
<td>249.47</td>
<td>2.982</td>
<td>Female</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Standard error</th>
<th>Median income of patient´s ZIP code</th>
</tr>
</thead>
<tbody>
<tr>
<td>300.24</td>
<td>4.501</td>
<td>First quartile (lowest income)</td>
</tr>
<tr>
<td>283.229</td>
<td>4.24</td>
<td>Second quartile</td>
</tr>
<tr>
<td>283.319</td>
<td>4.064</td>
<td>Third quartile</td>
</tr>
<tr>
<td>257.117</td>
<td>3.938</td>
<td>Fourth quartile (highest income)</td>
</tr>
<tr>
<td>Estimate</td>
<td>Standard error</td>
<td>Location of patient residence (NCHS)</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>276.481</td>
<td>3.868</td>
<td>Large central metropolitan</td>
</tr>
<tr>
<td>269.158</td>
<td>4.195</td>
<td>Large fringe metropolitan</td>
</tr>
<tr>
<td>274.846</td>
<td>4.873</td>
<td>Medium metropolitan</td>
</tr>
<tr>
<td>296.272</td>
<td>7.384</td>
<td>Small metropolitan</td>
</tr>
<tr>
<td>299.424</td>
<td>6.613</td>
<td>Micropolitan</td>
</tr>
<tr>
<td>311.401</td>
<td>9.069</td>
<td>Not metropolitan or micropolitan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Standard error</th>
<th>Expected payment source</th>
</tr>
</thead>
<tbody>
<tr>
<td>276.481</td>
<td>3.868</td>
<td>Private insurance</td>
</tr>
<tr>
<td>269.158</td>
<td>4.195</td>
<td>Medicare</td>
</tr>
<tr>
<td>274.846</td>
<td>4.873</td>
<td>Medicaid</td>
</tr>
<tr>
<td>296.272</td>
<td>7.384</td>
<td>Other insurance</td>
</tr>
<tr>
<td>299.424</td>
<td>6.613</td>
<td>Medicaid</td>
</tr>
<tr>
<td>311.401</td>
<td>9.069</td>
<td>Other insurance</td>
</tr>
<tr>
<td>276.481</td>
<td>3.868</td>
<td>Uninsured / self-pay / no charge</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Standard error</th>
<th>Hospital Ownership/control</th>
</tr>
</thead>
<tbody>
<tr>
<td>274.734</td>
<td>2.479</td>
<td>Private, not-for-profit</td>
</tr>
<tr>
<td>284.808</td>
<td>5.805</td>
<td>Private, for-profit</td>
</tr>
<tr>
<td>305.153</td>
<td>6.159</td>
<td>Public</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Standard error</th>
<th>Teaching status</th>
</tr>
</thead>
<tbody>
<tr>
<td>274.783</td>
<td>4.014</td>
<td>Teaching</td>
</tr>
<tr>
<td>282.269</td>
<td>2.557</td>
<td>Nonteaching</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Standard error</th>
<th>Location of hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td>279.332</td>
<td>3.607</td>
<td>Large central metropolitan</td>
</tr>
<tr>
<td>264.164</td>
<td>4.666</td>
<td>Large fringe metropolitan</td>
</tr>
<tr>
<td>279.024</td>
<td>4.944</td>
<td>Medium metropolitan</td>
</tr>
<tr>
<td>298.37</td>
<td>6.997</td>
<td>Small metropolitan</td>
</tr>
<tr>
<td>292.701</td>
<td>6.42</td>
<td>Micropolitan</td>
</tr>
<tr>
<td>308.891</td>
<td>12.663</td>
<td>Not metropolitan or micropolitan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Standard error</th>
<th>Bed size of hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td>287.66</td>
<td>5.775</td>
<td>Less than 100</td>
</tr>
<tr>
<td>276.441</td>
<td>3.181</td>
<td>100 - 299</td>
</tr>
<tr>
<td>279.597</td>
<td>4.164</td>
<td>300 - 499</td>
</tr>
<tr>
<td>285.324</td>
<td>5.751</td>
<td>500 or more</td>
</tr>
</tbody>
</table>

1b.5 Citations for data on Disparities:

1c. Outcome or Evidence to Support Measure Focus

1c.1 Relationship to Outcomes *(For non-outcome measures, briefly describe the relationship to desired outcome. For outcomes, describe why it is relevant to the target population):* With prompt and appropriate care, acute appendicitis should not progress to perforation or rupture. However, rates of perforated appendix are higher in the uninsured or underinsured in both the adult and pediatric population. In addition, perforated appendix rates also vary by race. Potential reasons for differences by insurance status or race include patients failing to seek appropriate care, access to care difficulties, or misdiagnoses and poor quality care that result in delays in receiving surgery.

Perforated appendix is a potentially avoidable hospitalization / ambulatory care sensitive condition.
1c.3-4. Type of Evidence: Expert opinion, Systematic synthesis of research

1c.4 Summary of Evidence (as described in the criteria; for outcomes, summarize any evidence that healthcare services/social processes influence the outcome):
Hospital admission for perforated appendix is a PQI that would be of most interest to comprehensive health care delivery systems. With prompt and appropriate care, acute appendicitis should not progress to perforation or rupture. Rates for perforated appendix are higher in the uninsured or underinsured in both adult and pediatric populations, which may be caused by patients failing to seek appropriate care, difficulty in accessing care, or misdiagnoses and poor quality care. Perforated appendix rates vary systematically by race, although the cause is unknown. Areas with high rates of perforated appendix may want to target points of intervention by using chart reviews and other supplemental data to investigate the reasons for delay in receiving surgery. Hospital contributions to the overall area rate may be particularly useful for this indicator, because misdiagnoses and other delays in receiving surgery in an emergency room may contribute substantially to the rate.

1c.5 Rating of strength/quality of evidence (also provide narrative description of the rating and by whom):
17 Smoothing recommended Testing, rating, and review were conducted by the project team. A full report on the literature review and empirical evaluation can be found in Refinement of the HCUP Quality Indicators by the UCSF-Stanford EPC. Detailed coding information for each QI is provided in the document Prevention Quality Indicators Technical Specifications. Rating of performance on empirical evaluations, ranged from 0 to 26. The scores were intended as a guide for summarizing the performance of each indicator on four empirical tests of precision (signal variance, area-level share, signal ratio, and R-squared) and five tests of minimum bias (rank correlation, top and bottom decile movement, absolute change, and change over two deciles), as described in the previous section.

1c.6 Method for rating evidence: The project team conducted extensive empirical testing of all potential indicators using the 1995-97 HCUP State Inpatient Databases (SID) and Nationwide Inpatient Sample (NIS) to determine precision, bias, and construct validity. The 1997 SID contains uniform data on inpatient stays in community hospitals for 22 States covering approximately 60% of all U.S. hospital discharges. The NIS is designed to approximate a 20% of U.S. community hospitals and includes all stays in the sampled hospitals. Each year of the NIS contains between 6 million and 7 million records from about 1,000 hospitals. The NIS combines a subset of the SID data, hospital-level variables, and hospital and discharge weights for producing national estimates. The project team conducted tests to examine three things: precision, bias, and construct validity.

Precision. The first step in the analysis involved precision tests to determine the reliability of the indicator for distinguishing real differences in provider performance. For indicators that may be used for quality improvement, it is important to know with what precision, or surety, a measure can be attributed to an actual construct rather than random variation.

For each indicator, the variance can be broken down into three components: variation within a provider (actual differences in performance due to differing patient characteristics), variation among providers (actual differences in performance among providers), and random variation. An ideal indicator would have a substantial amount of the variance explained by between-provider variance, possibly resulting from differences in quality of care, and a minimum amount of random variation. The project team performed four tests of precision to estimate the magnitude of between-provider variance on each indicator:

- Signal standard deviation was used to measure the extent to which performance of the QI varies systematically across hospitals or areas.
- Provider/area variation share was used to calculate the percentage of signal (or true) variance relative to the total variance of the QI.
- Signal-to-noise ratio was used to measure the percentage of the apparent variation in QIs across providers that is truly related to systematic differences across providers and not random variations (noise) from year to year.
- In-sample R-squared was used to identify the incremental benefit of applying multivariate signal extraction methods for identifying additional signal on top of the signal-to-noise ratio.

In general, random variation is most problematic when there are relatively few observations per provider, when adverse outcome rates are relatively low, and when providers have little control over patient outcomes.
or variation in important processes of care is minimal. If a large number of patient factors that are difficult to observe influence whether or not a patient has an adverse outcome, it may be difficult to separate the "quality signal" from the surrounding noise. Two signal extraction techniques were applied to improve the precision of an indicator:

- Univariate methods were used to estimate the "true" quality signal of an indicator based on information from the specific indicator and 1 year of data.
- Multivariate signal extraction (MSX) methods were used to estimate the "true" quality signal based on information from a set of indicators and multiple years of data. In most cases, MSX methods extracted additional signal, which provided much more precise estimates of true hospital or area quality.

Bias. To determine the sensitivity of potential QIs to bias from differences in patient severity, unadjusted performance measures for specific hospitals were compared with performance measures that had been adjusted for age and sex. All of the PQIs and some of the Inpatient Quality Indicators (IQIs) could only be risk-adjusted for age and sex. The 3M™ APR-DRG System Version 12 with Severity of Illness and Risk of Mortality subcategories was used for risk adjustment of the utilization indicators and the in-hospital mortality indicators, respectively. Five empirical tests were performed to investigate the degree of bias in an indicator:

- Rank correlation coefficient of the area or hospital with (and without) risk adjustment—gives the overall impact of risk adjustment on relative provider or area performance.
- Average absolute value of change relative to mean—highlights the amount of absolute change in performance, without reference to other providers' performance.
- Percentage of highly ranked hospitals that remain in high decile—reports the percentage of hospitals or areas that are in the highest deciles without risk adjustment that remain there after risk adjustment is performed.
- Percentage of lowly ranked hospitals that remain in low decile—reports the percentage of hospitals or areas that are in the lowest deciles without risk adjustment that remain there after risk adjustment is performed.
- Percentage that change more than two deciles—identifies the percentage of hospitals whose relative rank changes by a substantial percentage (more than 20%) with and without risk adjustment.

Construct validity. Construct validity analyses provided information regarding the relatedness or independence of the indicators. If quality indicators do indeed measure quality, then two measures of the same construct would be expected to yield similar results. The team used factor analysis to reveal underlying patterns among large numbers of variables—in this case, to measure the degree of relatedness between indicators. In addition, they analyzed correlation matrices for indicators.

1c.7 Summary of Controversy/Contradictory Evidence: See the following for a complete treatment of the topic: http://www.qualityindicators.ahrq.gov/downloads/pqi/pqi_guide_v31.pdf

Note: The Literature Review Findings column summarizes evidence specific to each potential concern on the link between the PQIs and quality of care, as described in step 3 above. A question mark (?) indicates that the concern is theoretical or suggested, but no specific evidence was found in the literature. A check mark indicates that the concern has been demonstrated in the literature.

1c.8 Citations for Evidence (other than guidelines): Updated citations will be presented in the May Steering Committee meeting

1c.9 Quote the Specific guideline recommendation (including guideline number and/or page number): Not applicable

1c.10 Clinical Practice Guideline Citation: Not applicable

1c.11 National Guideline Clearinghouse or other URL: Not applicable

1c.12 Rating of strength of recommendation (also provide narrative description of the rating and by whom): Not applicable

1c.13 Method for rating strength of recommendation (if different from USPSTF system, also describe rating and how it relates to USPSTF): Not applicable

1c.14 Rationale for using this guideline over others:
| TAP/Workgroup: What are the strengths and weaknesses in relation to the subcriteria for Importance to Measure and Report? | 1 |
| Steering Committee: Was the threshold criterion, Importance to Measure and Report, met? | Y |

2. SCIENTIFIC ACCEPTABILITY OF MEASURE PROPERTIES

Extent to which the measure, as specified, produces consistent (reliable) and credible (valid) results about the quality of care when implemented. (evaluation criteria)

2a. MEASURE SPECIFICATIONS

S.1 Do you have a web page where current detailed measure specifications can be obtained?

S.2 If yes, provide web page URL:

2a. Precisely Specified

2a.1 Numerator Statement *(Brief, text description of the numerator - what is being measured about the target population, e.g. target condition, event, or outcome):*

All discharges with ICD-9-CM diagnosis code for perforations or abscesses of appendix in any field among cases meeting the inclusion rules for the denominator.

2a.2 Numerator Time Window *(The time period in which cases are eligible for inclusion in the numerator):*

Time window can be determined by user, but is generally a calendar year.

2a.3 Numerator Details *(All information required to collect/calculate the numerator, including all codes, logic, and definitions):*

All discharges with ICD-9-CM diagnosis code for perforations or abscesses of appendix in any field among cases meeting the inclusion rules for the denominator. Include ICD-9-CM diagnosis codes:

- 5400
- AC APPEND W PERITONITIS
- 5401
- ABSCESS OF APPENDIX

Exclude cases:
- transfer from a hospital (different facility)
- transfer from a skilled Nursing Facility (SNF) or Intermediate Care Facility (ICF)
- transfer from another health care facility
- MDC 14 (pregnancy, childbirth, and puerperium)

2a.4 Denominator Statement *(Brief, text description of the denominator - target population being measured):*

All non-maternal discharges of age 18 years and older in Metro Area1 or county with diagnosis code for appendicitis in any field.

2a.5 Target population gender: Female, Male

2a.6 Target population age range: 18 and older

2a.7 Denominator Time Window *(The time period in which cases are eligible for inclusion in the denominator):*

Calendar year

2a.8 Denominator Details *(All information required to collect/calculate the denominator - the target population being measured - including all codes, logic, and definitions):*

All non-maternal discharges of age 18 years and older in Metro Area1 or county with diagnosis code for
appendicitis in any field. Include ICD-9-CM diagnosis codes (population at risk):
5400
AC APPEND W PERITONITIS
5401
ABSCESS OF APPENDIX
5409
ACUTE APPENDICITIS NOS
541
APPENDICITIS NOS

2a.9 Denominator Exclusions (Brief text description of exclusions from the target population): Not applicable.

2a.10 Denominator Exclusion Details (All information required to collect exclusions to the denominator, including all codes, logic, and definitions):
Not applicable.

2a.11 Stratification Details/Variables (All information required to stratify the measure including the stratification variables, all codes, logic, and definitions):
Observed rates may be stratified by gender, age (5-year age groups), race / ethnicity.

2a.12-13 Risk Adjustment Type: Risk adjustment method widely or commercially available

2a.14 Risk Adjustment Methodology/Variables (List risk adjustment variables and describe conceptual models, statistical models, or other aspects of model or method):
The predicted value for each case is computed using a logistic regression model and covariates for gender and age in years (in 5-year age groups). The reference population used in the model is the universe of discharges for states that participate in the HCUP State Inpatient Databases (SID) for the year 2007 (updated annually), a database consisting of 43 states and approximately 30 million adult discharges. The expected rate is computed as the sum of the predicted value for each case divided by the number of cases for the unit of analysis of interest (i.e., county, state, and region). The risk adjusted rate is computed using indirect standardization as the observed rate divided by the expected rate, multiplied by the reference population rate

2a.15-17 Detailed risk model available Web page URL or attachment: URL

2a.18-19 Type of Score: Rate/proportion
2a.20 Interpretation of Score: Better quality = Lower score

2a.21 Calculation Algorithm (Describe the calculation of the measure as a flowchart or series of steps): Each indicator is expressed as a rate, is defined as outcome of interest / population at risk or numerator / denominator. The AHRQ Quality Indicators (AHRQ QI) software performs five steps to produce the rates. 1) Discharge-level data is used to mark inpatient records containing the outcome of interest and 2) the population at risk. For provider indicators, the population at risk is also derived from hospital discharge records; for area indicators, the population at risk is derived from U.S. Census data. 3) Calculate observed rates. Using output from steps 1 and 2, rates are calculated for user-specified combinations of stratifiers. 4) Calculate expected rates. Regression coefficients from a reference population database are applied to the discharge records and aggregated to the provider or area level. 5) Calculate risk-adjusted rate. Use the indirect standardization to account for case-mix. 6) Calculate smoothed rate. A Univariate shrinkage factor is applied to the risk-adjusted rates. The shrinkage estimate reflects a reliability adjustment unique to each indicator. Full information on calculation algorithms and specifications can be found at http://qualityindicators.ahrq.gov/PQI_download.htm

2a.22 Describe the method for discriminating performance (e.g., significance testing): Significance testing is not prescribed by the software. Users may calculate a confidence interval for the risk-adjusted rates and a posterior probability interval for the smoothed rates at a 95% or 99% level. Users may define the relevant benchmark and the methods of discriminating performance according to their application.

2a.23 Sampling (Survey) Methodology If measure is based on a sample (or survey), provide instructions for
obtaining the sample, conducting the survey and guidance on minimum sample size (response rate): Not applicable

2a.24 Data Source (Check the source(s) for which the measure is specified and tested)
Electronic administrative data/claims

2a.25 Data source/data collection instrument (Identify the specific data source/data collection instrument, e.g. name of database, clinical registry, collection instrument, etc.):
The data source is hospital discharge data such as the HCUP State Inpatient Databases (SID) or equivalent using UB-04 coding standards. The data collection instrument is public-use AHRQ QI software available in SAS or Windows versions.

2a.26-28 Data source/data collection instrument reference web page URL or attachment: URL None
http://www.qualityindicators.ahrq.gov/software.htm

2a.29-31 Data dictionary/code table web page URL or attachment: URL None

2a.32-35 Level of Measurement/Analysis (Check the level(s) for which the measure is specified and tested)
Population: states, Population: counties or cities

2a.36-37 Care Settings (Check the setting(s) for which the measure is specified and tested)
Ambulatory Care: Office

2a.38-41 Clinical Services (Healthcare services being measured, check all that apply)
Clinicians: Physicians (MD/DO)

TESTING/ANALYSIS

2b. Reliability testing

2b.1 Data/sample (description of data/sample and size): AHRQ 2007 State Inpatient Databases (SID) with 4,000 hospitals and 30 million adult discharges

2b.2 Analytic Method (type of reliability & rationale, method for testing):
Expert panels and empirical analysis

2b.3 Testing Results (reliability statistics, assessment of adequacy in the context of norms for the test conducted):
Perforated appendix occurs in one-fourth to one-third of hospitalized acute appendicitis patients.39 Based on empirical evidence, this indicator is precise, with a raw area level rate of 33.3% and a substantial standard deviation of 14.4%. Relative to other indicators, a higher percentage of the variation occurs at the area level rather than the discharge level. However, the signal ratio (i.e., the proportion of the total variation across areas that is truly related to systematic differences in area performance rather than random variation) is low, at 26.5%, indicating that much of the observed differences in age-sex adjusted rates likely do not represent true differences across areas. Applying multivariate signal extraction methods can improve estimation of true differences in area performance.

2c. Validity testing

2c.1 Data/sample (description of data/sample and size): AHRQ 2007 State Inpatient Databases (SID) with 4,000 hospitals and 30 million adult discharges

2c.2 Analytic Method (type of validity & rationale, method for testing):
Expert panels and empirical analysis

2c.3 Testing Results (statistical results, assessment of adequacy in the context of norms for the test conducted):
Braveman et al. found that the rate of perforated appendix was 50% higher for patients with no insurance or Medicaid than HMO-covered patients, and 20% higher for patients with private fee-for-service insurance. A follow-up study by Blumberg et al. concluded that the high rate of perforated appendix in the black population at an HMO may be explained by delay in seeking care, rather than differences in the quality of health care.42 Weissman et al. found that uninsured (but not Medicaid) patients are at increased risk for ruptured appendix after adjusting for age and sex.43 Based on empirical results, areas with high rates of perforated appendix admissions tend to have lower rates of admissions for other ACSCs.

2d. Exclusions Justified

2d.1 Summary of Evidence supporting exclusion(s):
Exclusions remove cases where the outcome of interest is less likely to be preventable or with no or very low risk.

2d.2 Citations for Evidence:
Updated citations will be presented in the May Steering Committee meeting.

Refinement of the HCUP Quality Indicators (Technical Review), May 2001
http://qualityindicators.ahrq.gov/downloads/technical/qi_technical_review.zip

2d.3 Data/sample (description of data/sample and size):
AHRQ 2007 State Inpatient Databases (SID) with 4,000 hospitals and 30 million adult discharges

2d.4 Analytic Method (type analysis & rationale):
Expert panel and descriptive analyses stratified by exclusion categories

2d.5 Testing Results (e.g., frequency, variability, sensitivity analyses):
Refinement of the HCUP Quality Indicators (Technical Review), May 2001
http://qualityindicators.ahrq.gov/downloads/technical/qi_technical_review.zip

2e. Risk Adjustment for Outcomes/ Resource Use Measures

2e.1 Data/sample (description of data/sample and size):
AHRQ 2007 State Inpatient Databases (SID) with 4,000 hospitals and 30 million adult discharges

2e.2 Analytic Method (type of risk adjustment, analysis, & rationale):
Expert panel and descriptive analyses stratified by exclusion categories

2e.3 Testing Results (risk model performance metrics):
Risk-adjustment models use a standard set of categories based on readily available classification systems for demographics, severity of illness and comorbidities. Within each category, covariates are initially selected based on a minimum of 30 cases in the outcome of interest. Then a stepwise regression process on a development sample is used to select a parsimonious set of covariates where p<.05. Model is then tested on a validation sample.

2e.4 If outcome or resource use measure is not risk adjusted, provide rationale: Not applicable

2f. Identification of Meaningful Differences in Performance

2f.1 Data/sample from Testing or Current Use (description of data/sample and size):
AHRQ 2007 State Inpatient Databases (SID) with 4,000 hospitals and 30 million adult discharges

2f.2 Methods to identify statistically significant and practically/meaningfully differences in performance (type of analysis & rationale):
Posterior probability distribution parameterized using the Gamma distribution

2f.3 Provide Measure Scores from Testing or Current Use (description of scores, e.g., distribution by quartile, mean, median, SD, etc.; identification of statistically significant and meaningfully differences in performance):
2g. Comparability of Multiple Data Sources/Methods

2g.1 **Data/sample (description of data/sample and size):** Not applicable

2g.2 **Analytic Method (type of analysis & rationale):**
Not applicable

2g.3 **Testing Results (e.g., correlation statistics, comparison of rankings):**
Not applicable

2h. Disparities in Care

2h.1 **If measure is stratified, provide stratified results (scores by stratified categories/cohorts):** Median income of patient’s ZIP code:

- First quartile (lowest income) 300,240 4,501 0.000 0.097
- Second quartile 283,229 4,240 0.000 0.119
- Third quartile 283,319 4,064 0.000 0.857
- Fourth quartile (highest income) 257,117 3,938 0.148

2h.2 **If disparities have been reported/identified, but measure is not specified to detect disparities, provide follow-up plans:**

Users may stratify based on gender and race/ethnicity

TAP/Workgroup: What are the strengths and weaknesses in relation to the subcriteria for Scientific Acceptability of Measure Properties?

Steering Committee: Overall, to what extent was the criterion, Scientific Acceptability of Measure Properties, met?

Rationale:

3. USABILITY

Extent to which intended audiences (e.g., consumers, purchasers, providers, policy makers) can understand the results of the measure and are likely to find them useful for decision making. (evaluation criteria)

3a. Meaningful, Understandable, and Useful Information

3a.1 **Current Use:** In use

3a.2 **Use in a public reporting initiative (disclosure of performance results to the public at large) (If used in a public reporting initiative, provide name of initiative(s), locations, Web page URL(s). If not publicly reported, state the plans to achieve public reporting within 3 years):**

1) State of California:

2) State of New Jersey: Find and Compare Quality Care in New Jersey Hospitals,

3) Niagara Health Quality Coalition and Alliance for Quality Health Care: New York State Hospital Report Card,

4) State of Texas: Reports on Hospital Performance, http://www.dshs.state.tx.us/thcic/

5) Maine:

6) Hawaii: Hawaii Health Information Corporation:
http://hhic.org/publicreports.asp
7) Nevada: Nevada Compare Care: http://www.nevadacomparecare.net/monahrq/home.html

In use as a part of the AHRQ Quality Indicators. They are reported in numerous forums including:
http://hcupnet.ahrq.gov/HCUPnet.jsp?id=EB57801381F71C41&form=MAINSEL&j5=Y&Action=%3E%3ENext%3E%3E&_MAINSEL=AHRQ%20Quality%20Indicators

This measure is used in the Monahrq system that is provide for public reporting and quality improvement throughout the United States: http://monahrq.ahrq.gov/

3a.3 If used in other programs/initiatives (If used in quality improvement or other programs/initiatives, name of initiative(s), locations, Web page URL(s). If not used for QI, state the plans to achieve use for QI within 3 years):
The software is publicly available free of charge (www.qualityindicators.ahrq.gov/). Users apply the software to their own administrative data (UB-04 or claims) that is readily available. Hundreds of users have downloaded AHRQ Quality Indicator software.

This measure is used in the Monahrq system that is provide for public reporting and quality improvement throughout the United States: http://monahrq.ahrq.gov/

Testing of Interpretability (Testing that demonstrates the results are understood by the potential users for public reporting and quality improvement)
3a.4 Data/sample (description of data/sample and size): AHRQ 2007 State Inpatient Databases (SID) with 4,000 hospitals and 30 million adult discharges

3a.5 Methods (e.g., focus group, survey, QI project):
AHRQ has developed the Quality Indicators Mapping Tool to facilitate use of the Prevention Quality Indicators and incorporated the tool into the MONAHRQ software, which has undergone user beta testing and is now available for download

3a.6 Results (qualitative and/or quantitative results and conclusions): Several states including Maine, Hawaii and Nevada have begun public reporting using the MONAHRQ tool. See http://monahrq.ahrq.gov/

3b/3c. Relation to other NQF-endorsed measures

3b.1 NQF # and Title of similar or related measures: No related measures found.

(for NQF staff use) Notes on similar/related endorsed or submitted measures: No similar/related endorsed or submitted measures.

3b. Harmonization
If this measure is related to measure(s) already endorsed by NQF (e.g., same topic, but different target population/setting/data source or different topic but same target population):
3b.2 Are the measure specifications harmonized? If not, why?
No related measures found.

3c. Distinctive or Additive Value
3c.1 Describe the distinctive, improved, or additive value this measure provides to existing NQF-endorsed measures:
No related measures found.

5.1 If this measure is similar to measure(s) already endorsed by NQF (i.e., on the same topic and the same target population), Describe why it is a more valid or efficient way to measure quality:
No related measures found.

TAP/Workgroup: What are the strengths and weaknesses in relation to the subcriteria for Usability?
Steering Committee: Overall, to what extent was the criterion, Usability, met?
4. FEASIBILITY

Extent to which the required data are readily available, retrievable without undue burden, and can be implemented for performance measurement. *(evaluation criteria)*

<table>
<thead>
<tr>
<th>4a. Data Generated as a Byproduct of Care Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a.1-2 How are the data elements that are needed to compute measure scores generated?</td>
</tr>
<tr>
<td>Coding/abstraction performed by someone other than person obtaining original information (E.g., DRG, ICD-9 codes on claims, chart abstraction for quality measure or registry)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4b. Electronic Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>4b.1 Are all the data elements available electronically? (elements that are needed to compute measure scores are in defined, computer-readable fields, e.g., electronic health record, electronic claims)</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>4b.2 If not, specify the near-term path to achieve electronic capture by most providers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4c. Exclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>4c.1 Do the specified exclusions require additional data sources beyond what is required for the numerator and denominator specifications?</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>4c.2 If yes, provide justification.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4d. Susceptibility to Inaccuracies, Errors, or Unintended Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>4d.1 Identify susceptibility to inaccuracies, errors, or unintended consequences of the measure and describe how these potential problems could be audited. If audited, provide results.</td>
</tr>
<tr>
<td>Coding professionals follow detail guidelines, are subject to training and credentialing requirements, peer review and audit.</td>
</tr>
<tr>
<td>Perforated appendix rates vary systematically by race, although the cause is unknown. Areas with high rates of perforated appendix may want to target points of intervention by using chart reviews and other supplemental data to investigate the reasons for delay in receiving surgery. Hospital contributions to the overall area rate may be particularly useful for this indicator, because misdiagnoses and other delays in receiving surgery in an emergency room may contribute substantially to the rate.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4e. Data Collection Strategy/Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4e.1 Describe what you have learned/modified as a result of testing and/or operational use of the measure regarding data collection, availability of data/missing data, timing/frequency of data collection, patient confidentiality, time/cost of data collection, other feasibility/implementation issues:</td>
</tr>
<tr>
<td>As a PQI, admission for perforated appendix is not a measure of hospital quality, but rather one measure of outpatient and other health care.</td>
</tr>
<tr>
<td>Relative to other indicators, a higher percentage of the variation occurs at the area level rather than the discharge level. However, the signal ratio (i.e., the proportion of the total variation across areas that is truly related to systematic differences in area performance rather than random variation) is low, at 26.5%, indicating that much of the observed differences in age-sex adjusted rates likely do not represent true differences across areas. Applying multivariate signal extraction methods can improve estimation of true differences in area performance.</td>
</tr>
</tbody>
</table>
4e.2 Costs to implement the measure (costs of data collection, fees associated with proprietary measures):
All data necessary to calculate this measure are routinely collected for hospital administrative purposes. The software for calculating the measure is available for free at:
http://www.qualityindicators.ahrq.gov/software.htm

4e.3 Evidence for costs:
All data necessary to calculate this measure are routinely collected for hospital administrative purposes. The software for calculating the measure is available for free at:
http://www.qualityindicators.ahrq.gov/software.htm

4e.4 Business case documentation: All data necessary to calculate this measure are routinely collected for hospital administrative purposes. The software for calculating the measure is available for free at:
http://www.qualityindicators.ahrq.gov/software.htm

TAP/Workgroup: What are the strengths and weaknesses in relation to the subcriteria for Feasibility?

Steering Committee: Overall, to what extent was the criterion, Feasibility, met?
Rationale:

RECOMMENDATION
(for NQF staff use) Check if measure is untested and only eligible for time-limited endorsement.

Steering Committee: Do you recommend for endorsement?
Comments:

CONTACT INFORMATION
Co.1 Measure Steward (Intellectual Property Owner)
Co.1 Organization
Agency for Healthcare Research and Quality, 540 Gaither Road, Rockville, Maryland, 20850

Co.2 Point of Contact
John, Bott, MSSW, MBA, john.bott@ahrq.hhs.gov, 301-427-1317-

Measure Developer If different from Measure Steward
Co.3 Organization
Agency for Healthcare Research and Quality, 540 Gaither Road, Rockville, Maryland, 20850

Co.4 Point of Contact
John, Bott, MSSW, MBA, john.bott@ahrq.hhs.gov, 301-427-1317-

Co.5 Submitter If different from Measure Steward POC
John, Bott, MSSW, MBA, john.bott@ahrq.hhs.gov, 301-427-1317-, Agency for Healthcare Research and Quality

Co.6 Additional organizations that sponsored/participated in measure development
UC Davis,
Stanford University,
Battelle Memorial Institute

ADDITIONAL INFORMATION
Workgroup/Expert Panel involved in measure development
Ad.1 Provide a list of sponsoring organizations and workgroup/panel members’ names and organizations. Describe the members’ role in measure development.
<table>
<thead>
<tr>
<th>Question</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad.2 If adapted, provide name of original measure:</td>
<td>None</td>
</tr>
<tr>
<td>Ad.3-5 If adapted, provide original specifications URL or attachment</td>
<td>None</td>
</tr>
<tr>
<td>Measure Developer/Steward Updates and Ongoing Maintenance</td>
<td></td>
</tr>
<tr>
<td>Ad.6 Year the measure was first released:</td>
<td>2001</td>
</tr>
<tr>
<td>Ad.7 Month and Year of most recent revision:</td>
<td>10, 2010</td>
</tr>
<tr>
<td>Ad.8 What is your frequency for review/update of this measure?</td>
<td>Annual</td>
</tr>
<tr>
<td>Ad.9 When is the next scheduled review/update for this measure?</td>
<td>05, 2011</td>
</tr>
<tr>
<td>Ad.10 Copyright statement/disclaimers:</td>
<td>The AHRQ QI software is publicly available; no copyright disclaimers</td>
</tr>
<tr>
<td>Ad.11 -13 Additional Information web page URL or attachment:</td>
<td></td>
</tr>
<tr>
<td>Date of Submission (MM/DD/YY):</td>
<td>04/05/2011</td>
</tr>
</tbody>
</table>