CMS Measure Development Informational Series

Welcome

- All lines will be muted during the presentation.
 - There will be interaction times when the lines are unmuted.

- This session is being recorded.
- We will send a link with the URL of the recording, and the PowerPoint slides to all participants after the presentation.

CMS Measure Development Informational Series

CENTERS for MEDICARE & MEDICAID SERVIC

Reliability Testing – Concepts January 22, 2014

Information for Health Care Improvement

Introduction by:

Karen Pace

National Quality Forum

Special Guest Speaker: John L. Adams

Kaiser Permanente

Information for Health Care Improvement

NQF Endorsement Criteria - Reliability

Karen Pace, PhD, MSN Senior Director, Performance Measurement **National Quality Forum**

Contact: <u>kpace@qualityforum.org</u>

Conditions for Consideration

- A. Measure Steward Agreement
 - All non-government organizations
- B. Entity and process to maintain and update the measure as needed/at least every 3 years
- C. Intended use of the measure includes accountability/public reporting as well as performance improvement
- D. Measure is fully specified and tested for reliability and validity
- E. Attests that harmonization and competing measures considered & addressed
- F. Measure submission is complete this is developer's presentation of the measure

Endorsement Criteria

- Major criteria describe desirable characteristics of quality performance measures for endorsement
- Hierarchy and Rationale
 - Importance to measure and report measure those aspects with greatest potential of driving improvements; if not important, the other criteria less meaningful (must-pass)
 - Scientific acceptability of measure properties goal is to make valid conclusions about quality; if not reliable and valid, risk of misclassification and improper interpretation (must-pass)
 - Feasibility ideally, cause as little burden as possible; if not feasible, consider alternative approaches
 - Usability and Use goal is to use endorsed measures for decisions related to accountability and improvement
 - If competing measures, select "best-in-class" If related measures, should be harmonized

2. Scientific Acceptability of Measure Properties Must-pass criterion - must meet all subcriteria

Extent to which the measure, as specified, produces consistent (reliable) and credible (valid) results about the quality of care when implemented.

- 2a. Reliability
 - 2a1. Precise specifications
 - 2a2. Empirical reliability testing
- 2b. Validity (and threats to validity)
 - 2b1. Specifications consistent with evidence
 - 2b2.Validity testing

2b3.-2b7.Testing/analysis related to threats to validity, e.g., exclusions, risk adjustment for outcomes)

2d. Composite performance measure – analysis of composite construction

2a2. Reliability Testing

- Empirical testing conducted at level of either:
 - data elements used in the performance measure (e.g., interrater agreement on data elements used in the measure such as diagnosis, clinical value, intervention); or
 - computed performance scores for an accountable entity (e.g., signal-to-noise analysis of computed score such as percentage of patients who received the influenza vaccination)
- Updated evaluation guidance accepts testing at either level but testing at level of data elements only eligible for moderate rating; testing at level of performance score eligible for high rating
- Final evaluation rating depends on appropriate method, adequacy of sample, and result of testing

Resources

- NQF web pages <u>submitting standards</u> and <u>measure evaluation</u>
 - Document combining <u>criteria plus guidance</u> for evaluation
 - Examples of "<u>what good looks like</u>" for responses to measure submission items for evidence and measure testing
 - Measure Testing Task Force Report
 - Update of guidance for evaluating evidence, reliability, validity

Questions?

Measure Reliability Testing

Information for Health Care Improvement

Reliability in Provider Profiling

John L. Adams, Ph.D.

Principal Senior Statistician

Kaiser Permanente Center for Effectiveness & Safety Research

What is provider profiling?

- Characterizing the quality of providers' service delivery:
 - How are individual physicians doing at making sure the patients they see are getting the care they need?
 - Which hospitals are best at avoiding readmissions?
 - How good is the quality of care at my health plan?

Some key references

- Reliability
 - Fleiss J, Levin B, Paik M. Statistical Methods for Rates & Proportions. Indianapolis, IN: Wiley-Interscience; 2003.
 - Hays RD, Revicki D. Reliability and validity (including responsiveness). In: Fayers P, Hays R, eds. Assessing Quality of Life In Clinical Trials. New York: Oxford University Press Inc.; 2005.
 - Shrout, PE, and Fleiss JL. (1979). "Intraclass correlations: Uses in assessing rater reliability". Psychol Bul 86 (2): 420–428. doi:10.1037//0033-2909.86.2.420.
 - Brennan RL, Generalizability theory. Springer-Verlag, 2001.
- HLM
 - Raudenbush SW, Bryk AS. Hierarchical Linear Models. Applications and Data Analysis Methods. Newbury Park, CA: Sage, 2nd ed., 2002.
- The reliability tutorial
 - Adams JL. The Reliability of Provider Profiling: A Tutorial. TR-653-NCQA. Santa Monica, CA: RAND, 2009. http://www.rand.org/pubs/technical_reports/TR653.html

Plan for the talk

- Defining reliability
- The primary importance of validity
- Reliability and other statistical measures
- Approach 1: The beta-binomial approach to calculating reliability
- Approach 2: The normal hierarchical modeling approach to calculating reliability
- Summary and questions

The fundamental definition

- Reliability: The squared correlation between a measurement and the truth
- Math notation:

$$\rho^2$$
(measurement,truth)

- This would be easy to calculate if only we knew the truth!
- Most of the complications of reliability calculations come from various work arounds for not knowing the truth

A regression analogue

• If you could fit the regression model:

$$measurement = \beta_0 + \beta_1 truth + \varepsilon$$

The R-squared from this regression would be the reliability

An equivalent definition that we will use

The definition I find most useful is:

reliabilit y =
$$\frac{\sigma_{between}^2}{\sigma_{between}^2 + \sigma_{within}^2}$$

• Or with a more intuitive labeling:

$$reliability = \frac{\sigma_{Signal}^{2}}{\sigma_{Signal}^{2} + \sigma_{Noise}^{2}}$$

• Or made more specific to our setting:

reliability =
$$\frac{\sigma_{provider-to-provider}^{2}}{\sigma_{provider-to-provider}^{2} + \sigma_{error}^{2}}$$

CESR

Here is a more detailed version for discussion

What do different levels of reliability look like?

Reliability=90%

How do we get the reliability?

- We need a way to decompose the provider scores into provider-to-provider variation (signal) and noise
- This is usually done with something like an ANOVA model (old school) or a hierarchical model of some sort (new wave)
- Fit with mixed model (SAS) or specialty hierarchical (HLM) software
- This model can be extended in many ways

- Fixed effects (e.g. case mix adjustment)

- Hierarchy (MD within group within geography)

Why Should You Care About Reliability?

- Higher reliability increases the likelihood that you will assign a provider to the "right" group in a report card
 - Using low reliability information to drive behavior change could have undesirable consequences
- Sample size or standard errors, while often used as a proxy for reliability, may not be enough
 - So, minimum sample size or confidence interval requirements may not solve this problem

Is There a Minimum Level of Reliability?

- Psychometricians use a rule of thumb of 90% for drawing conclusions about individuals
- Lower levels (70-80%) are considered acceptable for drawing conclusions about groups
- Choice of level raises questions about the tradeoff between feasibility and scientific soundness

Some observations

- Reliability is often mistakenly thought of as a property of a measurement system (e.g. the SF-12 survey)
- The reason this common misunderstanding hasn't made much trouble in other applications is that the other things that affect reliability are often held constant
- But reliability is a function of:
 - Provider-to-provider variation
 - And therefore depends on the population of providers!
 - Sample size
 - Which in many problems does vary from provider to provider

Why did this reliability stuff suddenly become important?

- Reliability is the measure of whether you can tell one provider from another
- There has recently been more interest in public reporting and pay for performance
- The focus has been on putting providers into categories
 - High performance networks
 - -1-5 star public reporting systems
 - Pay for performance programs
- Reliability tells you most of what you need to know about misclassification in these systems

What is different here from simpler reliability I learned in school?

- There are two features that are now different
 - Lack of balance
 - Heterogeneity
- Balance
 - In a typical survey measure (e.g. SF-12) everyone answers the same questions, each question only once
 - Here we don't have balance because the number of observations can vary wildly from provider to provider
- Heterogeneity
 - This is different variances for each provider
 - Aggregate data often has different variances for each provider

Plan for the talk

- Defining reliability
- The primary importance of validity
- Reliability and other statistical measures
- Approach 1: The beta-binomial approach to calculating reliability
- Approach 2: The normal hierarchical modeling approach to calculating reliability
- Summary and questions

Validity

- Does the measurement measure what it claims to measure?
- If the answer is yes, the measure is valid
- Possible important questions in this context:
 - Is the measure controllable by the provider?
 - What about patient behavior?
 - Should the measures be case-mix adjusted?
 - Is it partially controlled by some other level of the system?
- Reliability ASSUMES validity

Getting the science right

- In the large validity is about getting the science right
- In empirical work this is often about building a defensible model

Consider what would happen if case-mix were not accounted for properly

• This formula would apply:

reliabilit y =
$$\frac{\sigma_{provider-to-provider}^{2} + \sigma_{case-mix}^{2}}{\sigma_{provider-to-provider}^{2} + \sigma_{case-mix}^{2} + \sigma_{error}^{2}}$$

- And reliability would appear to go up!
- This is a bad thing!
- This is why reliability depends critically on validity

Plan for the talk

- Defining reliability
- The primary importance of validity
- Reliability and other statistical measures
- Approach 1: The beta-binomial approach to calculating reliability
- Approach 2: The normal hierarchical modeling approach to calculating reliability
- Summary and questions

Other reliability measures

- Test reliability
- Test-retest reliability
- Inter-rater reliability
- Cohen's Kappa
- The intra-class correlation
- Cronbach's alpha

Test-retest reliability

- Test-retest reliability compares a test and a retest separated in time
- This gives the world time to change between the measurements
 - Test conditions can change (e.g. different years)
 - Test subjects can change (e.g. practice evolves)
- Generally this will be an even lower bound for reliability
- This is an example of adding a facet (Brennan)

The intra-class correlation

- Simple measures like Kappa don't generalize well to continuous measures
- Some measures are challenged by multiple raters and multiple scales
- Although there are several ways you could go the ICC is the most flexible generalization
- There is a famous ICC macro in SAS that calculates lots of ICCs
 - Think about correlation vs. squared correlation
 - Think about one item vs. the average of items at the provider level

Plan for the talk

- Defining reliability
- The primary importance of validity
- Reliability and other statistical measures
- Approach 1: The beta-binomial approach to calculating reliability
- Approach 2: The normal hierarchical modeling approach to calculating reliability
- Summary and questions

We will only consider simple pass/fail measures today

- Think of things like binary HEDIS© measures
 - Breast cancer screening
 - HbA1c testing for diabetics
- We will not talk today about how to case-mix adjust these measures
 - Could be important for things like readmission rates or measures with adherence drivers
- Everything here can be found in more detail in the reliability tutorial paper:
 - Adams JL. The Reliability of Provider Profiling: A Tutorial. TR-653-NCQA. Santa Monica, CA: RAND, 2009. http://www.rand.org/pubs/technical_reports/TR653.html

The beta-binomial model

- This is the most natural model for the reliability of pass/fail measures (e.g. HEDIS measures)
- The beta distribution
 - -A distribution on the interval (0-1)
 - -A very flexible 2 parameter distribution
 - -Alpha and beta

$$\iota = \frac{\alpha}{(\alpha + \beta)} \qquad \sigma_{provider-to-provider}^{2} = \frac{\alpha\beta}{(\alpha + \beta + 1)(\alpha + \beta)^{2}}$$

What does the beta distribution look like?

How do you calculate the reliability from the beta-binomial?

- First you need to get the alpha and beta
 - From the fitting macro
- Then you need to calculate the provider variance:

$$\sigma_{provider-to-provider}^{2} = \frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^{2}}$$

• Then you need the usual binomial variance for the error:

$$\sigma_{error}^2 = \frac{p(1-p)}{n}$$

Calculating the reliability

- The first step is to get an estimate of the provider-toprovider variance
- The best way I have found so far is:
 - MACRO BETABIN Version 2.2 March 2005
 - SUMMARY: Fits a Beta Binomial Model.
 - AUTHOR: Ian Wakeling Qi Statistics
- As with all free software Caveate Emptor!
- I tested this by simulating datasets like those in the tutorial
- There is an example in the tutorial of a measure with a mean pass rate of 50% and all providers have a sample size of 10, I'll use that example in the next few slides.

Using the betabin macro output

• Remember the formula for the provider-to-provider variation:

$$\sigma_{provider-to-provider}^{2} = \frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^{2}}$$

Then just plug in the numbers from the SAS output:

$$\sigma_{provider-to-provider}^{2} = \frac{4.5865 * 4.3862}{(4.5865 + 4.3862 + 1)(4.5865 + 4.3862)^{2}} = 0.025$$

 Just plug this and the provider's error variance in the reliability formula

CESR

So the reliability depends on p!

This is different from the usual scale development situation

- No simple answer to the question: "What is the reliability of my score?"
- The error variance depends on both the provider's pass rate and the provider's sample size
- Some cases:

Provider-to-provider variance	n	р	reliability
0.023	10	0.5	0.48
0.023	10	0.2	0.59
0.023	10	0.8	0.59
0.023	10	0.9	0.72

Plan for the Talk

- Defining reliability
- The primary importance of validity
- Reliability and other statistical measures
- Approach 1: The beta-binomial approach to calculating reliability
- Approach 2: The normal hierarchical modeling approach to calculating reliability
- Summary and questions

Start with a simple normal hierarchical model

• The usual HLM equation:

$$Score_i = P_i + \varepsilon_i$$

$$P_i \sim Normal(\mu, \sigma_{provider-to-provider}^2)$$

• Where P_i is the true provider mean and \mathcal{E}_i is a normal error term with the provider variance (possibly heteroskedastic)

One way to fit this model is in SAS's proc mixed

- It can be a pretty ordinary problem if every provider has the same error variance (standard error) of their score
- It can be a tricky problem if the providers' have different error variances (and they often do)
 - You can use the GDATA trick in the tutorial
 - A knowledgeable SAS programmer or analyst can figure out other ways to do this
- But if you invest in learning how to do this the extension to case-mix adjustment or non-normal models is possible
- Similar models can be fit in Stata, Mplus, HLM, R, or other software

Just use the estimates from SAS

• Output from proc mixed:

Cov Parm	Estimate
PROVIDER	0.02507
Residual	0.2248

- This used the same data from the tutorial that was used with the beta-binomial example
 - Violates the normality assumptions
 - Gives about the same estimate of the provider-to-provider variance
- Reliability is calculated similarly to the beta-binomial example and results are very similar

Plan for the talk

- Defining reliability
- The primary importance of validity
- Reliability and other statistical measures
- Example 1 : The beta-binomial approach to calculating reliability
- Example 2: The normal hierarchical modeling approach to calculating reliability
- Summary and questions

So what should we use?

- The beta-binomial approach
 - Pros
 - Does the right thing in the unbalanced case
 - Is pretty fast compared to trying to get proc mixed to do the right thing
 - Cons
 - Not an everyday thing for most analysts
 - Does not extend to more complicated problems
- The normal HLM approach
 - Pros
 - Can be generalized to more complicated problems
 - Is more familiar to some analysts and programmers
 - Cons
 - Can be computationally intensive and a hassle

Questions?

In Summary

today we have covered:

Information for Health Care Improvement

Announcements

Information for Health Care Improvement

Joint Education Webinar with the Health Services **Advisory Group** (HSAG)

Contact: <u>emunthali@qualityforum.org</u>

NQF Announcements

Upcoming Measure Submission Deadlines*

- Admissions and Readmissions (February 5, 2014)
- Health and Well-being (February 17, 2014)
- Musculoskeletal (March 3, 2014)
- Person and Family Centered Care-Phase 1 (March 14, 2014)
- Surgery (March 17, 2014)

• NEW! NQF's Measure Inventory Pipeline

- Links to submit a concept and to view submissions are available on <u>Submitting Standards</u> and <u>NQF Projects</u>
- Contact <u>measurepipeline@qualityforum.org</u>

General information, contact <u>measuremaintenance@qualitforum.org</u>

*Additional information about each project is available on <u>NQF Projects</u> page.

*All Measure Stewards must submit a fully-executed Measure Steward Agreement on/before the submission deadline.

Contact Information

Tennille Brown tennille.brown@cms.hhs.gov 410-786-5878

Elisa Munthali emunthali@qualityforum.org

Katie Figueroa kfigueroa@hsag.com 602-801-6761

Beth Gualtieri bgualtieri@hsag.com 602-801-6756

Melba Hinojosa mhinojosa@hsag.com 602-801-6763

Karen Pace kpace@qualityforum.org

Information for Health Care Improvement

Thank You

After you close the session by clicking **once** on the "X" in the upper right hand corner of your screen, the WebEx will present you with a Post-Activity Evaluation.

We value your input!

