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Purpose: The National Quality Forum (NQF) is a nonprofit consensus organization that recently endorsed
a measure focused on CT radiation doses. To comply, facilities must summarize the doses from consecutive
scans within age and anatomic area strata and report the data in the medical record. Our purpose was to assess
the time needed to assemble the data and to demonstrate how review of such data permits a facility to
understand doses.

Methods and Materials: To assemble the data we used for analysis, we used the dose monitoring
software eXposure to automatically export dose metrics from consecutive scans in 2010 and 2012. For a
subset of 50 exams, we also collected dose metrics manually, copying data directly from the PACS into an
excel spreadsheet.

Results: Manual data collection for 50 scans required 2 hours and 15 minutes. eXposure compiled the data
in under an hour. All dose metrics demonstrated a 30% to 50% reduction between 2010 and 2012. There
was also a significant decline and a reduction in the variability of the doses over time.

Conclusion: The NQF measure facilitates an institution’s capacity to assess the doses they are using for CT
as part of routine practice. The necessary data can be collected within a reasonable amount of time either with
automatic software or manually. The collection and review of these data will allow facilities to compare their
radiation dose distributions with national distributions and allow assessment of temporal trends in the doses

they are using.
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BACKGROUND

CT delivers higher doses of radiation than conventional
radiography, and the dramatic rise in CT use over the
last 15 years [1,2] has resulted in a 6-fold increase in
population exposure to radiation from medical imaging

(2,3]. Although CT is useful across a broad range of
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indications and leads to improved patient outcomes,
the radiation doses delivered by CT are in the range
that carry a small but significant risk of cancer [4-7],
and patients and their physicians are increasingly
interested in understanding and minimizing this risk
[8,9]. An increasing number of reports have docu-
mented a high level of variation in the doses used for
common exam types across patients, providers and
institutions [2,10,11]. This means that when a patient
is evaluated with CT for a particular clinical indication,
even accounting for patient size differences, the dose
received may vary by more than 50 fold depending on
where the scan is performed and who performs the
scan [11]. Thus, many patients are put at a higher risk
than necessary and there is an opportunity for signifi-
cant improvement [2,11]. Further, because there are no
widely endorsed or explicit standards for determining
CT radiation dose, few institutions quantify routinely
used doses. A guiding principle in radiology is that
doses of radiation should be as low as reasonably

achievable (ALARA), but with an absence of defined
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standards for the assessment and reporting of the doses
used in actual practice, it is impossible to assure this
standard is upheld.

Well-publicized radiation overdoses [12,13], coupled
with studies reporting variation in dose metrics both
within and across institutions [10], have caught the
attention of professional societies such as ACR and the
American College of Cardiology (ACC), as well as fed-
eral and state regulators [14-16]. This has prompted
calls to monitor and standardize doses and to develop
guidelines for appropriate utilization [17,18]. For
example, the Joint Commission issued a Sentinel Event
Alert on radiation and suggested that appropriate dose
ranges for high-volume and high-dose diagnostic imag-
ing studies be established and that physicians and
technologists be provided with reference doses [19].

The National Quality Forum (NQF) is a nonprofit
organization dedicated to improving the quality of
American health care by focusing on building national
consensus goals for performance improvement, creating
standards for measuring and publicly reporting on per-
formance, and promoting these goals through education
and outreach programs. Radiation Dose of Computed
Tomography (CT) is a NQF—endorsed quality metric
that facilities can collect and review to help guide op-
portunities for quality improvement and dose optimi-
zation [20]. The use of this measure would further
facilitate the pooling of doses across facilities for the
creation of CT dose benchmarks and possibly dose
reference levels (DRLs). DRLs are standardized dose
levels for radiation procedures. DRLs do not define
maximum or “do not exceed” levels, nor are they are
ideal dose levels, but rather provide a level that should
not be routinely exceeded without justification. If doses
are to exceed a given DRL, then the appropriateness of
the dose should be reviewed. Routine transgression of a
set. DRL can reveal systematic problems with dose
optimization.

The Maintenance of Certification process of the ABR
is a program designed to ensure the competence of
radiologists by certifying that they are continuing to
provide quality care and improving their practices
through the incorporation of new information.
Completion of the program requires fulfillment of 4
separate parts. Part 4 is the completion of a Practice
Quality Improvement (PQI) project [21-24], and
completion of a PQI project sometimes comes with the
added benefit of higher reimbursement from CMS. The
approach of a PQI project is the Plan, Do, Study, Act
approach [23]. To complete a PQI project, the diplo-
mate(s) must select a project, specify the goal, and focus
on a relevant metric [23]. Baseline data are collected or
evaluated and an improvement plan is created and
implemented. Data around the metric are re-evaluated
as compared to the established goal [23].PQI projects
can be done as individuals or by a group [23]. The
projects can be selected from pre-approved templated

projects approved by the ABR, or participants can
create their own projects [23]. There are currently 39
ABR-approved projects and templates, including the
University of California at San Francisco (UCSF)
project that focuses on assessing dose per the NQF
approved measure [25].

In this paper, we describe our experience with col-
lecting institutional radiation dose metrics information
using the NQF measure as a guide. Further, we discuss
the process through which a facility can upload their
data to a dose registry server at UCSF, which is under
development as part of the report to receive an audit
that can be used to create a report and to compare
with benchmarks. This will provide a framework for
ABR diplomates to complete an ABR-approved PQI

project.

METHODS

We collected radiation dose metrics from consecutive
CT scans performed on adults at UCSF, a single, large,
academic medical center in San Francisco. UCSF pro-
vides primary, secondary, and tertiary care and per-
forms approximately 25,000 CT scans a year on 8
scanners (GE Lightspeed 16, Lightspeed VCT, and
Discovery CT750) located at several inpatient and
outpatient facilities in San Francisco. To assess change
over time, we included CT scan data from 2 time pe-
riods, March and April of 2010 and 2012, to assess
change over time. For 50 examinations, we used 2
different approaches for assembling the CT dose met-
rics to quantify the time and effort involved in data
collection. For the remaining cases, we used a single
method to collect the dose metrics. The UCSF Insti-
tutional Review Board approved the study.

NQF Measure Specifications

The NQF measure has 2 parts; part A is an outcome
measure that calls for collection of radiation dose
metrics, and part B is a process measure that assesses
the proportion of CT examinations where dose is re-
ported in the medical record. This manuscript focuses
on part A. The measure specifies assembling and
summarizing the distribution in CT dose metrics (such
as the 25th, 50th, and 75th percentile distribution)
using CT dose index (CTDI,,), dose-length product
(DLP), and effective dose for consecutive CT scans.
The dose metrics are stratified by anatomic area (head,
chest, abdomen and/or pelvis) by scanner model, and
calculated within age strata (“adults” includes all in-
dividuals age 15 years and older, and children are
separated into 4 age groups: <1 year, 1-5 years, >5-10
years, and >10-15 years). For adults, 2 minimum of
100 consecutive scans is required per strata, and for
children, a minimum of 50 CT scans (or 1 year of data)
per age strata. Data are not required to be compiled for
all age groups, and this manuscript is limited to adults.
Per NQF measure specifications, CT scans performed



as part of an interventional radiology procedure, for
radiation oncology planning, or that cover multiple re-
gions as part of a single scanning event (eg, chest-
abdomen-pelvis) were excluded. The measure does not
require grouping CT exams by indication, protocol, or
number of series. Although it is not specified in the
endorsed NQF measure, we also assembled data on
the size-specific dose estimate (SSDE) [26], a metric
introduced after the submission of the NQF mea-
sure that adjusts for patient size in the calculation of

CTDL,, [27].

Dose Metrics

The CTDI,,; (a standardized measure of dose to a
specified phantom), DLP (the product of the CTDI,;
and the scan length), scan length, patient age, CT
scanner manufacturer and model were recorded for
each CT examination. Effective dose was calculated
using software that sums absorbed organ doses using
ICRP 103 weighting factors [28]. SSDE was calculated
for abdominal/pelvis examinations, using a mid-scan
measurement of body circumference. For multiphase
exams, where the exposure events covered the same
scan region (ie, routine abdomen-pelvis with and
without contrast), DLP was defined as the sum of the
individual phase DLPs, and scan length was defined as
the sum of the individual series scan length. The
CTDI,, was defined for multiple phase exams as the
summed DLP divided by the summed scan length.
Multiphase exams covering different anatomic areas
were excluded.

Recording Dose and Patient Information

We used eXposure™, a commercially available dose
monitoring software product, to assemble the radiation
dose metrics. We exported dose metrics for all exams
within the specified time periods for adult patients. We
used the protocol name to identify the anatomic area
imaged. We exported the dose metrics and other vari-
ables (such as anatomic area) using the program export
feature. eXposure calculates effective dose using esti-
mated organ doses and the ICRP 103 weighting factors
[28]. eXposure calculates SSDE using a midscan mea-
surement of circumference, as specified in the American
Association of Physicists in Medicine (AAPM) report
from Task Group 204 [26].

For a subset of 50 CT examinations, the radiation
dose metrics were collected manually in order to
compare the feasibility of assembling the data using
different approaches. For this method, we used PACS to
review CT scans performed on prespecified days and
selected 50 consecutive scans within our included
anatomic areas categorized by the study name. For each
examination, we recorded patient age, date of scan,
anatomic area, CTDI,;, and DLP for each series into a
Microsoft Excel spreadsheet, and for examinations with
multiple series, the dose metrics were combined using
the method described above.
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Clinical Interventions

Between the 2 data collection periods (2010 and 2012),
UCSF instituted several policies and procedures aimed
at optimizing radiation doses used for CT. Interventions
included the creation of a radiation safety committee
tasked with reviewing and monitoring CT radiation
dose metrics administered across all departmental sites,
the formulation and implementation of dose reduction
strategies, the adoption of Adaptive Statistical Iterative
Reconstruction dose-reduction software on several CT
scanners, reduction in the use of multiphase high-dose
protocols, and the replacement of a Lightspeed Ultra
scanner with a Discovery CT750 HD. These in-
terventions likely contributed to changes in CT dose
metrics between the 2 time periods.

RESULTS

Overall, 5,846 CT examinations of the head, chest, and
abdomen/pelvis in adult patients are included in this
report (Table 1). The majority of examinations were
performed on Lightspeed VCT scanners.

Table 2 shows the 25th, 50th, and 75th percentiles of
the dose metric distributions by anatomic area and time
period. Between 2010 and 2012, there was around a
30% to 50% reduction in the dose metrics across each
of the 3 anatomic areas. Of note, patterns in dose over
time were similar across all dose metrics. For example,
the median (50th percentile) head CTDI,,; decreased
from 57 mGy to 33 mGy, a 41% reduction. Similarly, the
abdominal/pelvic CTDI,,; decreased from 11.7 mGy
to 6.5 mGy, a 44% reduction. In general, there was a

Table 1. Included number of CT exams by patient age,
sex, anatomic area, scanner model, and year

Characteristic 2010 2012 Total
Sex
Female 1598 1367 2,965
Male 1492 1389 2,881
Age
18-19 35 15 50
20-29 215 217 432
30-39 283 250 533
40-49 408 327 735
50-59 655 554 1,209
60-69 625 631 1,256
70-79 509 459 968
80+ 360 303 663
Anatomic Area
Head 895 817 1,712
Chest 734 750 1,484
Abdomen/Pelvis 1,461 1,189 2,650
Scanner
Lightspeed 16 742 699 1,441
Lightspeed VCT 2,133 1,851 3,984
Lightspeed Plus 215 - 215
Discovery CT750 HD = 206 206
Total 3,090 2,756 5,846
Between the 2 collection periods, the CT750 HD replaced the Light-
speed Plus.
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Table 2. Summary of dose metrics including the 25th, 50th and 75th percentiles, by anatomic area and study year

CTDl,, (mGy) DLP (mGy cm) E (mSv)
2010 2012 % change 2010 2012 % change 2010 2012 % change

Head

25% 49 28 —44% 1,127 491 —56% 2.1 1.0 —52%

50% 57 33 —41% 1,205 645 —46% 2.4 1.3 —46%

75% 68 49 —29% 1,394 945 —32% 2.8 1.9 —32%
Chest

25% 5.1 3.5 —31% 174 119 —32% 3.5 2.4 -31%

50% 8.1 5.5 —-32% 282 189 —-33% 5.2 3.6 -31%

75% 15.5 9.5 —39% 491 333 —32% 9.7 6.1 —37%
Abdomen/Pelvis

25% 7.6 4.5 —41% 496 247 —50% 8.5 41 —52%

50% 1.7 6.5 —44% 808 490 —-39% 141 8.1 —43%

75% 17.5 12.2 —30% 1,304 890 —32% 21.6 14.9 -31%
Values may appear to be off because of rounding. CTDI,, = volume of CT dose index; DLP = dose-length product.

slightly greater percentage reduction in dose metrics
at the 25th and 50th percentiles, compared with the
75th percentile. Additionally, there were slightly smaller
changes for chest examinations compared with those of
the head and abdomen/pelvis.

The changes in dose metrics over time were similar
whether measured using CTDI,,; or SSDE (Table 3),
though the values of SSDE were slightly higher than
CTDI,,.

The full distribution of the dose metrics over time
is shown in Figure 1. These graphs demonstrate a
consistent reduction in the mean and median dose metrics
as well as a reduction in the variation in dose in 2012.

For the sample of 50 exams, the data extraction with
eXposure took under an hour. The manual data
extraction of 50 CT examinations took 2 hours and 15
minutes (2 minutes and 42 seconds per examination).

DISCUSSION

The CT radiation dose measure endorsed by the NQF
provides an easy way for facilities to begin to assess dose
levels used for CT imaging in practice. Using the NQF
dose format, we were able to easily assess CT dose
metrics at UCSF over 2 time periods and identify pat-
terns. Our data show that all dose metrics considered
gave similar results.

The NQF measure will also facilitate the creation of
standards and guidelines, including benchmarks, for
appropriate CT doses. This could help reduce the
currently high variation in doses used for CT by creating
explicit target dose levels and diagnostic reference levels.

Although DRLs for CT have been used for quality

improvement programs in many industrialized nations
for over a decade and have lead to increased standardi-
zation in CT [29], widely endorsed DRLs have yet to be
established in the United States. The ACR Dose Index
Registry began a pilot program in 2010 to collect CT
dose metrics data in the US [30], but public reporting
and endorsement of DRLs are not part of the current
objectives. To create DRLs, it is necessary to collect
information across a large number of facilities on actual
performance, and, by convention, DRLs are set at the
75% distribution in dose. Only a small number of pub-
lications describe specific DRLs that might be used
in the United States, and these have been based on rela-
tively small number of patients and facilities [31,32].
However, pooling data using the NQF measure would
allow for the creation of both national and regional DRLs.

SSDE was introduced after the submission of the
NQF measure, and was therefore not included as part of
the NQF measure. Concern that it would be better to
include this metric has been raised [33]; however, we
found little difference in change over time using these 2
different metrics. On an individual patient level, SSDE
may be a better method of assessing the appropriateness
of dose because it takes patient size into account; how-
ever, when evaluating dose on the facility level, we found
it does not matter which metric is used.

The purpose of assembling data at the facility level is
to understand the dose metrics used for imaging in a
population of patients. It should not replace careful
review of protocols, or the optimization of dose
focused on individual patients and their individual re-
quirements for diagnosis. However, review of data

Table 3. Summary of CTDI, and SSDE for abdomen and pelvis by study year

CTDl,o (mGy) SSDE (mGy)
Percentile 2010 2012 % change 2010 2012 % change
25% 7.6 4.5 —41% 10.5 6.4 —-39%
50% 11.7 6.5 —44% 14.9 7.9 —47%
75% 17.5 12.2 —-30% 19.8 13.7 -31%
CTDl,c = volume of CT dose index; SSDE = size-specific dose estimate.
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Fig 1. (A) Radiation dose metrics for head CT scans, 2010 (top) and 2012 (bottom). Red line indicates median. (B) Radiation
dose metrics for chest CT scans, 2010 (top) and 2012 (bottom). Red line indicates median. (C) Radiation dose metrics
for abdomen and pelvis CT scans, 2010 (top) and 2012 (bottom). Red line indicates median. CTDI,, = volume of CT

dose index.

assembled using these summary statistics provides an
opportunity to identify areas where institutional doses
may be higher than needed thereby prompting careful
protocol review.

We explored different methods of assembling dose to
test whether NQF measure data could be collected by
facilities with varying resources. Although the manual
extraction method may be more prone to error, it is a
feasible method for data collection for a practice that
wants to assess their performance without purchasing

commercial dose monitoring software. Calculating the
distribution of dose as specified by the NQF measure
(100 examinations for each of the 3 anatomic areas)
would require approximately 13.5 hours of data
extraction on PACS per CT scanner type (4 hours and
30 min per 100 scans times 3 anatomic areas equals 13.5
hours). For a facility with 2 types of CT scanners, this
would require approximately 27 hours of data extrac-
tion. The lead study author, a high school student,
abstracted the data for this study, so a practice could hire
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Fig 1. (continued).

a student to collect the data necessary to comply with
the NQF measure in a single week. eXposure required
time to learn how to use the product, but the actual data
extraction time was brief—under an hour. There are also
freeware products available for download, such as
Radiance (http://radiancedose.com). Radiance would
take time for installation and adjustment, similar to
eXposure, but once set up should take only about 1
second per exam to extract dose metrics.

In California, legislation requires the reporting of
radiation dose metrics in the patient record, specifically
CTDI,, and DLP, and the reporting of certain high
exposure events that are the result of repeat examina-
tions or scanning of the incorrect body part. Reporting
of this dose information requires that facilities either
manually record the dose in the patient record or use
automated software solutions to track and report dose.
Other states, the federal government, and/or accrediting
bodies may eventually follow suit and require similar
dose monitoring and reporting. This means that many
facilities may already be tracking doses, or may have to
do so in the near future, which makes submitting data to
fulfill this measure even more practical.

As part of the Virtual Symposium on Radiation Safety
in CT, we are creating an opportunity for individuals
and institutions to upload their own data and receive an
NQEF-style audit report that summarizes dose similar to
what we report in this manuscript. A detailed report of
facility doses will be provided to participating in-
stitutions and is intended for use by the facility to
evaluate their performance. Individuals can use the
process of reviewing their data to complete a PQI
project on optimizing doses used in practice. We will

then aggregate the data to create benchmarks by
anatomic region and make these data widely available.

The NQF measure requires sorting exams by
anatomic area, but not by the specific protocol or clin-
ical indication. Although this would be useful (ie, to
compare dose metrics within more nuanced reasons for
scanning), this is currently not feasible. The Radlex is a
relatively new development in radiology to help organize
the indication for imaging, but requires a specialized tool
to map the protocols to specific clinical indications. The
NQF CT Dose Measure does not require that protocols
be mapped to the Radlex and therefore all protocols used
for a particular anatomic region are included.

The study has several limitations. We included data
from only a single institution, and it is possible that a
more varied population would result in differences across
doses metrics. This paper is meant to be a description of
the methods for collecting basic CT dose measures at a
facility and to demonstrate how the data can be displayed
to evaluate the need for dose optimization. Specific rea-
sons for changes in the dose metrics seen over time are
outside the scope of this analysis; however, as outlined in
the methods, strategies we employed included careful
review of patient doses. Because the measure only sub-
divides dose metrics into 3 broad anatomic areas, it
cannot be used to find the ideal dose for a given patient.
However, this broad classification makes the measure
easy to fulfill. Though it does not directly identify
specific causes or solutions, by helping facilities to un-
derstanding their CT radiation dose metrics in a larger
context, the NQF measure can highlight potential areas
for improvement and is an important first step in getting
institutions to lower doses where the need is greatest.


http://radiancedose.com

The ultimate goal of the NQF measure is to build

national consensus for quality improvement in dose
optimization, to create standards for measuring and
publicly reporting on performance, and to promote
patient safety and health care quality through education

and outreach programs.

TAKE-HOME POINTS

With the methods outlined in the NQF’s measure on
radiation dose, facilities can assess the dose metrics
they use for CT as part of routine practice.

Fulfilling the NQF measure should take 13.5 hours of
work if data is collected manually, and even less time
if collected with commercial software or freeware.
The NQF’s broad methods of organizing scans make it
easy to fulfill and can be an important first step in getting
institutions to lower doses where the need is greatest.
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Do

Personalized Technologist Dose Audit
Feedback for Reducing Patient
Radiation Exposure From CT

Diana L. Miglioretti, PhD*®, Yue Zhang, PhD®, Eric Johnson, MS®, Choonsik Lee, PhD®,
Richard L. Morin, PhD?, Nicholas Vanneman, MA®, Rebecca Smith-Bindman, MD"%"

Purpose: The aim of this study was to determine whether providing radiologic technologists with audit
feedback on doses from CT examinations they conduct and education on dose-reduction strategies reduces
patients’ radiation exposure.

Methods: This prospective, controlled pilot study was conducted within an integrated health care system
from November 2010 to October 2011. Ten technologists at 2 facilities received personalized dose audit
reports and education on dose-reduction strategies; 9 technologists at a control facility received no inter-
vention. Radiation exposure was measured by the dose-length product (DLP) from CT scans preformed
before (n = 1,630) and after (n = 1,499) the intervention and compared using quantile regression. Tech-
nologists were surveyed before and after the intervention.

Results: For abdominal CT, DLPs decreased by 3% to 12% at intervention facilities but not at the control
facility. For brain CT, DLPs significantly decreased by 7% to 12% at one intervention facility; did not change
at the second intervention facility, which had the lowest preintervention DLPs; and increased at the control
facility. Technologists were more likely to report always thinking about radiation exposure and associated
cancer risk and optimizing settings to reduce exposure after the intervention.

Conclusions: Personalized audit feedback and education can change technologists’ attitudes about, and

awareness of, radiation and can lower patient radiation exposure from CT imaging.
Key Words: CT, radiation exposure, audit feedback, radiologic technologists
J Am Coll Radiol 2014;11:300-308. © 2014 Published by Elsevier on behalf of American College of Radiology

INTRODUCTION

The use of CT has increased dramatically over the past
few decades [1-4]. CT greatly improves diagnostic ca-
pabilities but exposes patients to higher levels of radia-
tion than conventional radiography. Radiation exposure
and subsequent cancer risk vary greatly by individual,
even for CT scans conducted for the same indication
[1,4,5]. Cancer risk rises with increased radiation
exposure [6], so to minimize potential harms from CT,

we need ways of standardizing and reducing radiation
exposure from CT imaging where practical.
Radiologists choose the CT protocols for assessing
patients; however, radiologic technologists implement
the protocols and influence radiation exposure to pa-
tients by determining CT scanner settings. One
approach to improving the performance of health
professionals is personalized audit feedback, which has
not been studied among radiologic technologists.
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Providing CT technologists with radiation dose
indices from scans they performed might motivate
them to implement methods that can appropriately
lower radiation exposure. Another approach recom-
mended by the Image Gently® campaign is to increase
awareness and understanding of CT radiation dose
issues among radiologic technologists through addi-
tional training [7].

We conducted a pilot study to evaluate the feasibility,
acceptability, and effectiveness of providing technolo-
gists with personalized dose audit reports and an
educational seminar on reducing patients’ radiation
exposure from CT. We assessed the impact of this
intervention by comparing dose indices for patients
scanned before and after the intervention. We included
a control facility to examine changes in radiation that
may have occurred due to factors unrelated to the
intervention, such as recent media attention to radiation

from CT.

METHODS

This pre-post, nonequivalent controlled pilot study was
conducted within Group Health Cooperative, an inte-
grated health care system in Washington State, from
November 2010 to October 2011, with the intervention
taking place on April 2, 2011. The intervention group
included 10 technologists at 2 facilities; the control
group included 9 technologists at a third facility. Facil-
ities were chosen so that the study arms had similar
numbers of technologists and so that participating
technologists worked at only a single facility. Scanners at
the intervention facilities were a GE LightSpeed VCT
64-slice scanner (GE Healthcare, Milwaukee, Wiscon-
sin) and a Toshiba Asteion 4-slice scanner (Toshiba,
Tokyo, Japan). The scanner at the control facility was a
Toshiba Aquillion 16-slice machine. Our HIPAA-
compliant study was approved by the Group Health

Cooperative Institutional Review Board.
Intervention

Dose Audit Report. Technologists at intervention fa-
cilities were given personalized audit reports showing
dose metrics from a sample of CT scans they per-
formed in the preceding 5 months on patients aged
>15 years, relative to their peers (a sample audit report
is provided in the online Appendix). The two dose
metrics provided were dose-length product (DLP) and
effective dose. DLP is the product of the scan length, in
centimeters, and the volumetric CT dose index, an
estimate of the radiation delivered to a specified
phantom for a single scan slice, in millgrays. DLP,
expressed as milligray-centimeters, thus reflects the total
radiation output for a scan [8]. Effective dose, in mil-
lisieverts, accounts for radiation from the scanner and
the sensitivity of irradiated organs and tissues to
developing cancer from the exposure. We included
effective dose in the reports because it is useful for
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comparing CT scans of different anatomic regions on a
common scale; for individuals without training in
medical physics, effective dose may be easier to un-
derstand than DLP.

The audit reports provided feedback for the 4 most
common anatomic regions, using a format endorsed by
the National Quality Forum [9]. For each anatomic
region, the report included the median values and his-
tograms of dose metrics for examinations conducted by
the technologist, examinations performed by all tech-
nologists at their facility, and examinations performed at
all 3 facilities. We included UK 2003 national diag-
nostic reference dose values representing the 75th
percentile of doses in the United Kingdom [10] because
no US values exist. We listed the technologists’ cases
with dose metrics that were high relative to their facil-
ities, so that they could examine those cases on their
own.

Educational Seminar. Technologists in the interven-
tion group participated in an interactive 6-hour seminar
by a medical physicist, Richard Morin, PhD, and a
radiologist, Rebecca Smith-Bindman, MD. They
reviewed the basic physics of radiation from CT ma-
chines, factors causing higher radiation exposure, and
dose-lowering strategies.

Intervention Evaluation. Two weeks after the inter-
vention, participating technologists completed an online
evaluation of the audit report and seminar
(SurveyMonkey.com).

CT Examinations and Radiation Dose
Measurement

For each CT technologist, before and after the inter-
vention, we randomly selected up to 30 examinations on
patients >15 years of age for each anatomic region. We
sampled 1,630 CT studies performed within 4 months
before the intervention and 1,499 within 6 months after
the intervention.

Our main outcome measure of radiation exposure was
DLP, directly abstracted from CT examination dose
reports from one intervention facility and the control
facility. DLP was not on the dose report for the other
intervention facility; therefore, we abstracted scan pa-
rameters (scan length, slice thickness, kilovolt, milli-
ampere or milliampere second, rotation time, and pitch)
and estimated DLP from these metrics [11-13]. Because
facility-specific DLPs were compared before and
after the intervention using the same method at each
facility, the technique used to measure DLP should not
affect the estimates of change in DLP, but it could in-
fluence absolute levels of DLP for each facility.

Patient age, gender, and height and weight measure-
ments closest to the time of the CT examination were
obtained from the medical record. Body mass index
(BMI) was calculated as weight in kilograms divided by
the square of height in meters squared.


http://SurveyMonkey.com
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Table 1. Demographic characteristics of participating

CT technologists

Intervention Control
Variable Facilities Facility*
Gender
Male 3 (30%) 4 (44%)
Female 7 (70%) 5 (56%)
Years of experience as CT 19 (2—31) 9 (3—29)
technologist”
Highest level of education
completed
Technical degree or certification 3 (33%) 0 (0%)
2-y college degree 6 (67%) 4 (67%)
4-y college degree 0 (0%) 1 (17%)
Missing 1 4
Participated in CT dose reduction
training courses as part of job
training and skill development
Yes 6 (75%) 1 (17%)
No 2 (25%) 5 (83%)
Missing 2 3
Average number of work hours per
week
20 1 (13%) 0 (0%)
36 0 (0%) 2 (40%)
40 8 (89%) 3 (60%)
Missing 1 4
Note: Data are expressed as number (percentage) or mean (range).
*Two radiologists from the control facility retired before the
survey was conducted, and 2 others did not respond.
TYears of experience was missing for 1 intervention radiologist
and 4 control radiologists.

Technologist Survey

We surveyed CT technologists about their attitudes
toward and awareness of radiation exposure from CT
imaging. Intervention technologists were surveyed on
the day before the intervention and again 8 months

later. Control technologists were surveyed 9 months
after the intervention.

Statistical Analysis
To evaluate intervention effects on radiation exposure, we
used two-stage quantile regression to compare DLPs
before and after the intervention across the distribution,
with particular interest in changes that might occur at the
highest DLPs [14-16]. Models were fit using quantreg in
R wversion 2.15.0 (R Foundation for Statistical
Computing, Vienna, Austria). The first-stage models
were parameterized to allow inference on quantile-specific
estimates of preintervention DLP values for each tech-
nologist, intervention effects for each intervention facil-
ity, and a temporal effect for the control facility. Models
for abdominal and chest CT studies adjusted for patient
age (15—50 vs >50 years) and BMI. The model for chest
CT additionally adjusted for an indicator of whether the
study was CT angiography. To estimate adjusted
quantile-specific preintervention and postintervention
doses by facility, we used a second-stage linear regression
of technologist-specific estimates on facility effects. In-
verses of the variances of estimated DLP values for each
technologist from the first-stage model were incorporated
as weights in the second-stage model, and a random effect
accounted for residual variation among technologists.
To determine if results were sensitive to modeling
assumptions, we refit models by adjusting for age in years
as a continuous variable, including a quadratic term for
BMI, treating BMI as a categorical variable, including
height and weight instead of BMI, adjusting for gender,
and removing angiographic studies. We also refit models
without examinations from a technologist who did not
participate in the seminar but received an audit report.
Results were similar for all sensitivity analyses.

Table 2. Characteristics of CT examinations and patients

Intervention Facility 1 Intervention Facility 2 Control Facility
Variable Pre Post Pre Post Pre Post
Total 589 554 380 390 661 555
CT type
Abdominal and pelvic 173 (29%) 142 (26%) 123 (32%) 103 (26%) 234 (35%) 162 (29%)
Brain 143 (24%) 145 (26%) 9 (26%) 102 (26%) 189 (29%) 149 (27%)
Chest 145 (25%) 140 (25%) 91 (24%) 101 (26%) 145 (22%) 146 (26%)
Maxillofacial/sinus 128 (22%) 127 (23%) 7 (18%) 4 (22%) 3 (14%) 8 (18%)
Age (y)
15—29 60 (10%) 60 (11%) 9 (8%) 4 (9%) 3 (8%) 3 (8%)
30—49 110 (19%) 115 (21%) 0 (24%) 7 (25%) 136 (21%) 111 (20%)
50—74 299 (51%) 262 (47%) 199 (52%) 202 (52%) 297 (45%) 278 (50%)
>75 120 (20%) 117 (21%) 2 (16%) 7 (15%) 175 (26%) 123 (22%)
Sex
Female 344 (58%) 343 (62%) 233 (61%) 241 (62%) 401 (61%) 327 (59%)
Male 234 (40%) 211 (38%) 147 (39%) 149 (38%) 260 (39%) 228 (41%)
Body mass index
Underweight 13 2%) 8 (2%) 5 (1%) 6 (2%) 13 (2%) 2 (2%)
Normal weight 194 (34%) 186 (36%) 88( 4%) 81 (21%) 202 (31%) 157( 9%)
Overweight 197 (35%) 168 (32%) 10 (29%) 39 (36%) 221 (34%) 188 (35%)
Obese 163 (29%) 156 (30%) 170 (46%) 57 (41%) 213 (33%) 179 (33%)
Missing 22 36 7 12 19




RESULTS

Demographic characteristics of radiologic technologists
are shown in Table 1. Most had 2-year college degrees and
worked 40 hours a week. Patient age and sex distributions
were similar across facilities (Table 2). Patients at inter-
vention facility 2 were more likely to be obese.

Radiation Exposure From CT Decreased After the
Intervention

Abdomen CT. DLPs varied widely, ranging from 116
to 2,613 mGy - cm. Before the intervention, facility 1
had the lowest median DLP (712 mGy - cm) but the
highest variability (interquartile range [IQR], 468—996
mGy cm). After the intervention, the distribu-
tion shifted toward lower doses (median DLP, 591
mGy - cm; IQR, 402—934 mGy - cm). Preintervention
DLPs were similar at intervention facility 2 (median, 847
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mGy - cm; IQR, 665—1,048 mGy - cm) and the control
facility (median, 800 mGy - cm; IQR, 675—1,010
mGy - cm). After the intervention, the median DLP
stayed the same at facility 2 and increased at the
control facility (843 mGy - cm). DLPs became less
variable at facility 2, with high DLPs shifted down-
ward after the intervention relative to the control
group (IQR, 726—988 mGy - cm intervention vs
679—1,063 mGy - cm control).

From the quantile regression, DLPs for abdominal
CT decreased at both intervention facilities, with the
control facility unchanged (Fig. 1, Table 3). For inter-
vention facility 1, DLPs decreased significantly or with
borderline significance up to the 75th percentile of the
DLP distribution. For example, the 70th percentile
decreased by 82 mGy - cm (95% confidence interval
[CI], 3 to 161 mGy - cm; P = .042). Intervention
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Fig 1. Quantile process plots showing estimated facility-specific intervention effects by anatomic region. Lines indicate
estimated changes in dose-length product (DLP) after the intervention compared with before the intervention over the full
distribution of DLPs for randomly selected CT scans preformed by technologists at indicated facilities. Values below zero
indicate reduced DLP after the intervention. Gray bands show 95% confidence intervals, with more narrow intervals
indicating more precise estimates. Bands that exclude zero are significantly different from zero at the .05 level. Estimates for
abdominal and pelvic CT and chest CT are adjusted for age and body mass index. Chest CT is additionally adjusted for

angiography.
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Table 4. Technologists’ attitudes about and awareness of radiation exposure from CT before intervention and 8 to 9

months after the intervention (for postintervention and control)

Intervention Facilities
Preintervention Postintervention Control Facility
Question n (%) n (%) n (%)
Total 9 8 6
How often do you think about radiation dose
when imaging a patient?
Never/rarely 0 (0%) 0 (0%) 0 (0%)
Sometimes 1 (11%) 0 (0%) 0 (0%)
Often 3 (83%) 0 (0%) 1(17%)
Always 5 (56%) 8 (100%) 5 (83%)
How often do you think about radiation from
CT imaging and its relationship to
cancer risk for the patient?
Never/rarely 1 (11%) 0 (0%) 0 (0%)
Sometimes 4 (44%) 0 (0%) 2 (33%)
Often 1 (11%) 2 (25%) 4 (67%)
Always 3 (33%) 6 (75%) 0 (0%)
How often do you alter the settings of an
exam with the intent to minimize
radiation exposure to the patient?
Never/rarely 0 (0%) 0 (0%) 0 (0%)
Sometimes 0 (0%) 0 (0%) 1(17%)
Often 7 (78%) 4 (50%) 1 (17%)
Always 2 (22%) 4 (50%) 4 (67%)
CT imaging increases a patient’s risk for
cancer.
Strongly disagree/disagree 0 (0%) 0 (0%) 0 (0%)
Neutral 2 (22%) 1 (13%) 0 (0%)
Agree 7 (78%) 1 (13%) 6 (100%)
Strongly agree 0 (0%) 6 (75%) 0 (0%)
The amount of radiation from a CT exam is
significantly more than from a
conventional x-ray.
Strongly disagree/disagree 0 (0%) 0 (0%) 0 (0%)
Neutral 0 (0%) 0 (0%) 0 (0%)
Agree 1 (11%) 1 (13%) 0 (0%)
Strongly agree 8 (89%) 7 (88%) 6 (100%)
CT imaging poses a risk to patients if done
frequently.
Strongly disagree/disagree 0 (0%) 0 (0%) 0 (0%)
Neutral 0 (0%) 1 (13%) 0 (0%)
Agree 3 (33%) 2 (25%) 4 (67%)
Strongly agree 6 (67%) 5 (63%) 2 (33%)
Radiation reduction efforts are important
and worth the time and effort to
implement.
Strongly disagree/disagree 0 (0%) 0 (0%) 0 (0%)
Neutral 0 (0%) 0 (0%) 1(17%)
Agree 1 (11%) 0 (0%) 1(17%)
Strongly agree 8 (89%) 8 (100%) 4 (67%)
| am in the position to impact the amount of
radiation exposure to patients.
Strongly disagree/disagree 0 (0%) 0 (0%) 1 (17%)
Neutral 0 (0%) 1 (12%) 1(17%)
Agree 0 (0%) 0 (0%) 0 (0%)
Strongly agree 9 (100%) 7 (88%) 4 (67 %)
The benefit CT examinations provide
outweigh the risks associated with
them.
Strongly disagree/disagree 1 (11%) 0 (0%)* 0 (0%)
Neutral 3 (33%) 1 (14%) 2 (33%)
Agree 4 (44%) 5 (71%) 1(17%)
Strongly agree 1 (11%) 1 (14%) 3 (560%)
(continued)
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Table 4. Continued

Intervention Facilities
Preintervention Postintervention Control Facility
Question n (%) n (%) n (%)
Altering the CT exam parameters on the
machine at the time of the exam to
deviate from standard protocol is an
important step that determines
radiation dose from a CT exam.
Strongly disagree/disagree 0 (0%) 0 (0%) 0 (0%)*
Neutral 0 (0%) 0 (0%) 1 (20%)
Agree 0 (0%) 0 (0%) 2 (40%)
Strongly agree 9 (100%) 8 (100%) 2 (40%)
Altering the CT exam parameters on the
machine at the time of the exam to
deviate from standard protocols, based
on patient characteristics, is a way to
lower the radiation dose from a CT
exam.
Strongly disagree/disagree 0 (0%) 0 (0%) 0 (0%)
Neutral 0 (0%) 0 (0%) 1(17%)
Agree 1 (11%) 2 (25%) 0 (0%)
Strongly agree 8 (89%) 6 (75%) 5 (83%)
When compared to other types of imaging
procedures how important do you think
CT exams are for being able to
diagnosis and treat disease?
Unimportant/little importance 0 (0%)* 0 (0%)* 0 (0%)
Moderately important 1 (13%) 0 (0%) 0 (0%)
Important 2 (25%) 5 (71%) 2 (33%)
Very important 5 (63%) 2 (29%) 4 (67 %)
* = No response received.

DISCUSSION

Our pilot study is the first controlled trial to evaluate an
intervention among radiologic technologists aimed at
lowering radiation exposure from common CT exami-
nations. We found that providing CT technologists
with personalized dose audit feedback and education on
dose-reduction strategies increased their knowledge
about radiation exposure from CT imaging and lowered
radiation exposure to patients for the two most
commonly performed examinations, abdominal and
brain CT. It is not surprising that we found no reduc-
tion in doses for maxillofacial examinations, given these
are low-dose examinations, with less room for
improvement from dose optimization.

A prior study found that a collaborative radiation
dose-reduction program reduced patient radiation
exposure from a single, specific examination: cardiac CT
angiography [17]. These examinations have much
higher dose than most CT studies, and the intervention
was multifaceted. Although our dose reductions were
modest in comparison, approximately 10%, our
results are striking because of the simplicity of the
intervention, the fact that this impact occurred across a
large range of study types (ie, abdominal CT includes
dozens or more different examination types), and the
fact that the greatest reductions occurred for

technologists at facilities that delivered the highest doses
at baseline. In addition, we studied commonly per-
formed CT examinations conducted for a wide variety of
indications.

A Cochrane Collaboration review of 26 types of
audit feedback across 21 studies found a weighted
median adjusted percentage change relative to control
of 1.3% [18]. For 8 comparisons from 5 studies of
patient outcomes, the weighted median percentage
change was 17%. We found significant reductions in
dose metrics of 7% to 12% for 2 of 4 CT types after a
single audit feedback presentation. On the basis of the
Cochrane review, we might expect larger improve-
ments from multiple audit report presentations that
include targets with an action plan. For future studies,
we hope to develop targets based on institutional-level
data, which may be more meaningful than UK
reference values, along with individualized action
plans.

The education we provided encouraged technolo-
gists to adjust the scanner settings they use for each
patient. Obtaining larger dose reductions may
require a medical physicist to develop lower dose
protocols [19,20] and engagement with the radiolo-
gists who choose the protocols. Interestingly, several
technologists noted that they wanted to involve



radiologists in future dose-optimization efforts be-
cause radiologists develop the protocols. An inter-
vention involving both radiologists and technologists
may have an even greater influence on patient radi-
ation exposure.

DLPs vary widely within and among facilities [1-3],
meaning that some patients receive unnecessarily high
levels of radiation directly linked to increased cancer
risk [1,6]. However, excessively low DLPs can result in
image noise that leads to repeat examinations,
increasing overall radiation exposure. Therefore, a
successful intervention to reduce radiation exposure
from CT imaging will reduce the high end of the DLP
distribution but not necessarily change the mean if
variability is also reduced by increasing doses at the low
end. The quantile regression approach we used is ideal
for measuring intervention success in this setting, as it
compares the full dose distribution [21]. Quantile
regression does not assume normally distributed data,
allowing exploration of intervention effects on the
original scale and aiding interpretation. However,
precise estimates of effects at the high end of the dis-
tribution require a large number of observations. The
wide CIs we report, especially for upper quantiles,
reflect the relative instability of these estimates. How-
ever, our results are strikingly consistent, if not always
significant: DLPs decreased at intervention facilities for
the most common and highest-dose examinations,
while DLPs were unchanged or increased in the control
group.

All new CT scanners report radiation dose indices for
patient exposure, allowing assessment of performance.
Our feedback reports are consistent with a National
Quality Forum CT dose measure that endorses collec-
tion of dose metrics by anatomic area and age [9]. This
is a simple approach for understanding current perfor-
mance and for assessing the impact of efforts to lower
radiation exposure. We found that adjusting for BMI,
height, and/or weight had little effect on DLP vari-
ability or our results, so this additional data collection
might be unnecessary. DLP collection via chart
abstraction was time-consuming, but software is now
available for automated collection of CT dose indices,
making wide-scale, regular provision of this information
feasible.

The main limitation of our pilot study was the small
number of facilities and technologists. In addition, we
provided audit information only once, without US tar-
gets. Some technologists performed small numbers of
examinations, and two retired during the intervention.
Strengths include collecting DLPs for a large number of
CT examinations for the 4 most commonly imaged
anatomic areas and using quantile regression to examine
full DLP distributions. We adjusted for patient age and
BMI, which could influence DLP. Importantly, we
included a control for changes in DLP due to reasons
other than our intervention.
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TAKE-HOME POINTS

e Providing radiologic technologists with personalized
dose audit reports and education can change
their attitudes about and awareness of radiation
exposure from CT and lower radiation exposure to
patients.

e Future studies should evaluate multiple audit report
presentations that include meaningful targets with
individualized action plans.

o Obtaining larger radiation dose reductions may
require a medical physicist to develop lower dose
protocols and engagement with the radiologists who
choose the protocols.
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How to Use this Report

The first two pages of this report provide a summarized overview of your facility's doses
using the four metrics: Effective Dose (mSv), SSDE (mGy), CTDIvol (mGy), & DLP
(mGy-cm). Values highlighted in orange reflect medians from '"Your Site' that are
statistically significantly higher than 'All Other Sites'. Medians highlighted in blue are
stastically significanly lower in "Your Site' compared with 'All Other Sites'. For each metric
by anatomic region, the percent of "Your Site' observations over the 75th percentile is
also displayed. For an average facility, 25% of the observations would be over the 75%
percentile. Sites with high dose distributions would have a higher percentage of
observations over this threshold while sites with lower dose distribution would have less
than 25% of their scan doses above the 75th percentile.

Box plots included on the report display distributions of dose within anatomic region
stratified by machine type. The figure to the right provides a schematic of how to interpret
box plots. Note that the bottom of the box represents the 25th percentile value while the
top of the box is the 75th percentile. The solid line in the middle is the 50th percentile
and the '+' denotes the mean. The interquartile range IQR) is defined as the difference
between the 75th percentile and the 25th percentile, essentially the length of the box.
Note that the whiskers are clipped for values beyond 1.5 times the IQR.
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Dose Summary
October 21, 2013

The first page provides an overview of your CT doses and the following pages provide a more detailed comparison of your institution to those of other facilities.

Adult Imaging - Including All Models

Effective Dose (mSv) SSDE (mGy)
All Other Sites Your Site All Other Sites Your Site
Pcnt over Pcnt over
ANATOMICAL o % 75“1 * * 75“1
REGION Median [IQR] @ Median [IQR] Y%ile Median [IQR] @ Median [IQR] Y%ile
ABDO/PELVIS | 12.4[7.4,19.9] | 17.9 [13.3,23.3] 39% 13.1[9.1,17.8] | 17.9 [15.5,20.3] 50%
CHEST | 6.4[3.8,10.3] 13.3 [10.9,17.8] 81% 11.7 [7.4,17.8] | 20.7 [16.9,24.0] 71%
HEAD 1.8[1.3,2.3] 1.1 [1.0,1.3] 5%
CTDlvol (mGy) DLP (mGy-cm)
All Other Sites Your Site All Other Sites Your Site
Pcnt over Pcnt over
ANATOMICAL . LT Median [IQR] = Median [IQR]  75th %ile"
REGION Median [IQR] = Median [IQR] %ile
719 [436,1172] 1019 36%
ABDO/PELVIS | 10.5[6.9,15.7] | 14.4[11.7,17.1] 37% [755,1356]
CHEST | 9.7 [5.8,15.3] 16.3 [12.5,19.7] 57% 355 [209,549] 695 [574,903] 80%
HEAD | 55.2 [37.3,62.1] | 33.9 [30.8,37.0] 1% 894 [623,1193] 573 [487,670] 1%
*Cel/s highlighted in reflect medians from "Your Site' that are statistically significantly higher than 'All Other Sites'.
Cells highlighted in reflect medians from 'Your Site' that are statistically significantly lower than 'All Other Sites'.

*An average performing facility would have 25% over the reference level.



Dose Summary - by Anatomic Region and Model

13.0
[10.2,16.2]

71%

14.0
[12.6,15.6]

ABDO/PELVIS | Machine #1 15.5
[10.1,21.4]

Machine #2 12.2
[9.6,15.7]

Machine #3 15.1
[10.4,21.3]

27%

93%

12.9
[10.2,16.4]

1.7
[11.7,11.7]

CHEST| Machine #2 | 7-6[7.1,8.3]
Machine #3 [8,;01-2.8]

46%

15.3
[12.4,16.5]

17.1
[14.3,19.7]

13.4

[11.4,15.6]

25% 17.9

[15.7,20.0]

32% 15.5

[13.4,18.1]

14.1
[12.7,15.4]

71%

51% 18.0

[15.6,20.1]

17.0
[15.1,18.6]

945
[632,1346]

Effective Dose (mSv) CTDIvol(mGy) SSDE(mGy) DLP (mGy-cm)
All Other All Other All Other All Other
Sites Your Site Sites Your Site Sites Your Site Sites Your Site
% over % over % over % over
Median Median 75th Median Median 75th Median Median 75th Median Median 75th
ANATOMICAL * * i * * i * % + % % +
REGION Device [IQR] [IQR] %ile [IQR] [IQR] %ile [IQR] [IQR] %ile [IQR] [IQR] %ile

9%

688
[559,893]

49%

70%

864
[605,1152]

401
(366,435

57%

532
[461,716]

32%

91%

48%

HEAD | Machine #1 | 241[1.026] 09[0.61.1] 3% 74.4 27.0 1% 32.1 26.3 1% 1203 414 3%
[28.9,78.1] | [22.2,30.0] [31.3,49.5] | [21.8,29.0] [497,1312] | [312,527]

Machine #2 | 2.0[0.8,2.1] | 1.5[1.0,19] 20% 55.9 446 6% 53.0 435 3% 1013 720 17%
[22.7,55.9] | [32.6,49.7] [24.3,55.3] | [31.9,46.6] [381,1091] = [512,947]

Machine #3 | 2312025 | 11[1.0,1.3] 4% 62.7 34.1 0% 59.6 327 0% 1201 575 3%
[62.7,62.7] | [31.5,36.7] [56.6,62.0] | [30.5,34.7] [1076,1301] = [499,656]

Cells highlighted in orange reflect medians from 'Your Site' that are statistically significantly higher than 'All Other Sites'.

Cells highlighted in

*An average performing facility would have 25% over the reference level.

reflect medians from 'Your Site' that are statistically significantly lower than 'All Other Sites'.
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Dose Summary - Head Scans
Mean Effective Dose (mSv) by Device and Institution

HEAD EXAMS BY EQUIPMENT
25th percentile 0.7 1.0 0.6 0.8 1.0 2.0 1.0
50th percentile 1.1 2.4 0.9 2.0 1.5 2.3 1.1
75th percentile 1.5 2.6 1.1 21 1.9 2.5 1.3
Minimum 0.1 0.6 0.1 0.4 0.2 0.5 0.1
Maximum 21.0 5.6 6.0 4.5 8.6 7.4 10.3

3.0 ] [} [} [} [}
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Your Site All Others Your Site All Others Your Site All Others Your Site
[ Machine #4 | Machine #1 | Machine #2 Machine #3

Dashed line indicates 75th percentile value for all head exams, irrespective of device.
Outlier values beyond 2 standard deviations have been clipped.
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Dose Summary - Head Scans
Mean Effective Dose (mSv) by Institution

INSTITUTION

All Other Sites

Your Site

Percent

Percent
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Effective Dose (mSv)

A=50th percentile of all other sites B=75th percentile of all other sites
A*=50th percentile of your site B*=75th percentile of your site

I I I I
: : : : Number of exams 841
| | | | 10th percentile 0.8
\ \ \ \ Mean 2.1
[ \ ‘ ‘ Standard deviation 1.0
: : : : Interquartile range 1.5
\ \ I I 50th percentile 2.3
\ \ I I 75th percentile 2.6
: : : : 90th percentile 3.0
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University of California, San Francisco National Quality Forum Measure
UCSF CT Exam Doses Compared to all Like Facilities

October 12, 2012

The FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table of SITE by anatomic_area

anatomic_area(anatomic_area)

SITE(INSTITUTION) | abdpel chest head Total
ALL SITES 7296 4154 7278 18728
33.65 19.16 33.57 86.38
38.96 22.18 38.86
85.20 84.81 88.53
S001 1267 744 943 2954
5.84 343 4.35 13.62
42.89 25.19 31.92
14.80 15.19 11.47
Total 8563 4898 8221 21682
39.49 22.59 37.92 100.00

17:20 Monday, October 22, 2012

This report analyzes 2 months of CT dose information for the UCSF Medical Center and compares this facility level datawith the data on
all sites. The file name: UCSF _NQF Q3 _2012R, was submitted on October 7, 2012

1



INSTITUTION

ALL SITES

S001

Percent

Percent

17:20 Monday, October 22, 2012

Effective Dose (ICRP103) (MSV) Head Exams

50 7 : Number of exams 7278
\ Minimum value 0.1
! 10th percentile 1.0
40 : Standard deviation 0.9
\ Interquartile range 1.1
! Median 1.6
30 : Mean 1.7
\ 75th percentile 2.2
1 90th percentile 2.7
i 95th percentile 3.0
20 7 \;\ Maximum value 13.0
|
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10 I
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|
0 L ;
50 7 : Number of exams 943
\ Minimum value 0.2
! 10th percentile 0.8
40 : Standard deviation 1.0
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Effective Dose (mSv)

RED DASHED LINE INDICATES 75TH PERCENTILE FOR ALL LIKE FACILITIES




17:20 Monday, October 22, 2012

Effective Dose (ICRP103) (mSv) Chest Exams

ALL SITES
Percent

: Number of exams 4154
\ Minimum value 0.5
! 10th percentile 2.8
: Standard deviation 7.5
\ Interquartile range 8.3
! Median 9.1
: Standard deviation 7.5
\ Mean 10.2
! 75th percentile 13.2
: 90th percentile 17.9
\ 95th percentile 233
‘ Maximum value 81.9

INSTITUTION

S001
Percent

10 7
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: Number of exams 744
[ Minimum value 0.5
‘ 10th percentile 1.4
: Standard deviation 4.1
[ Interquartile range 3.2
: Median 34
| Standard deviation 4.1
[ Mean 4.6
: 75th percentile 54
| 90th percentile 9.7
[ 95th percentile 125
: Maximum value 37.4
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