1 The Objective

- 2 Prevent healthcare-associated surgical-site infections (SSIs).
- 3

4 The Problem

5 Traditional infection control programs are directionally correct, but insufficient to enable 6 organizations to "chase zero" and reduce the harm of preventable healthcare-associated 7 infections (HAIs). [Denham, 2009a; Denham, 2009b] Certifying, purchasing, and quality 8 organizations agree that such departments need to be restructured and integrated into 9 performance improvement programs. [Denham, 2009c] It is estimated that nearly 2 10 million patients experience a healthcare-associated infection each year; of these 11 infections, 22 percent are SSIs. [Klevens, 2007] SSIs are infections that occur within 30 12 days after an operation and can involve the skin, subcutaneous tissue of incision, fascia, 13 muscular layer, or the organ or surrounding space. 14 SSIs have the second highest frequency of any adverse event occurring in hospitalized 15 patients and are the third most common health-care-associated infection (HAI). 16 Approximately 500,000 SSIs occur each year in 2 to 5 percent of patients undergoing 17 inpatient surgeries. [Anderson, 2008] Estimated rates for operative wound classifications 18 are as follows: clean contaminated cases 3.3 percent, contaminated cases 6 percent, and 19 dirty cases 7.1 percent. The national rate of SSI averages between 2 and 3 percent for 20 clean cases, and an estimated 40 to 60 percent of these infections are preventable. 21 [Kirkland, 1999; de Lissovoy, 2009] 22 The severity of SSI harm to patients is significant, resulting in increased mortality, 23 readmission rate, length of hospital stay, and cost for patients who incur them. 24 [Levinson, 2008] Each SSI is associated with an average of 9.7 additional postoperative 25 hospital days. [Cruse, 1980; Cruse, 1981; de Lissovoy, 2009] According to the American 26 Heart Association, approximately 700,000 open-heart procedures are performed each 27 year in the United States; more than 67 percent of those are coronary artery bypass grafts 28 (CABG). Mediastinitis can occur after an open-heart surgical procedure with rates of 29 between 0.5 and 5.0 percent, with a mortality rate as high as 40 percent. In 2006, 2.7 30 percent of Medicare patients acquired postoperative pneumonia or a thromboembolic

31 event. [AHRQ, 2009b] Patients with SSI have a 2 to 11 times higher risk of death

SAFE PRACTICE 22: SURGICAL-SITE INFECTION PREVENTION

32 compared to operative patients without SSI. [Kirkland, 1999; Engemann, 2003] 33 Approximately 8,205 patients die from an SSI each year. [Klevens, 2007] Seventy-seven 34 percent of deaths in patients with an SSI are directly attributable to the infection. 35 [Mangram, 1999] 36 The preventability of SSIs has been studied, and guidelines and recommendations for 37 their prevention have been published by multiple professional organizations; the key 38 recommended practices are consistent among them. [Anderson, 2008; WHO, 2008; 39 WHO, 2009] These include: 1) proper selection and administration of antimicrobial 40 prophylaxis, as well as timely discontinuation postoperatively; [Mangram, 1999; 41 Bratzler, 2004; Bratzler, 2006; Kirby, 2009; Pan, 2009; Quinn, 2009] 2) avoidance of hair 42 removal at the operative site, unless the presence of hair will interfere with the 43 operation; [Mangram, 1999] and 3) maintaining blood glucose level at less than 200 44 mg/dL in patients undergoing cardiac surgeries. [Bratzler, 2006] The use of specific skin 45 preparation solutions has been shown to reduce SSI by 40 percent. [Darouiche, 2008; 46 Darouiche, 2010] Surveillance for SSI should be performed, and ongoing findings and 47 feedback should be communicated to surgical personnel and organizational leadership. 48 [Anderson, 2008] 49 Costs of SSIs vary depending on the type of operative procedure and the type of 50 infecting pathogen; published estimates range from \$3,000 to \$29,000. [Coello, 1993; 51 Vegas, 1993; Kirkland, 1999; Hollenbeak, 2000] However, the recent Pennsylvania Health 52 Care Cost Containment Council found that the median cost of an SSI was \$153,132, 53 compared to a hospital stay with no infection of \$33,260, resulting in an increased cost 54 per patient of \$119,872. [PHC4, 2008] Using the consumer price index for inpatient 55 hospital services, the aggregate attributable hospital costs due to SSI range from \$11,874 56 to \$34,670 in 2007 dollars. [Scott, 2009] Using the 2005 Healthcare Cost and Utilization 57 Project National Inpatient Sample (HCUP NIS) database, 6,891 cases of SSI were 58 identified. On average, SSI extended the length of stay by 9.7 days, with an increase in 59 cost of \$20,842 per admission. Nationally, these SSI cases contributed to an additional 60 406,730 hospital days and hospital costs exceeding \$900 million. Readmissions of 91,613 61 patients for treatment of SSI accounted for 521,933 days at a cost of nearly \$700 million. 62 [de Lissovoy, 2009] Sub-classifying analysis of SSIs into superficial incisional, deep

63	incisional, and organ/space categories will provide better precision in cost forecasting
64	and a reality check to performance improvement cost-benefit assessments. [Anderson,
65	2008]
66	Beginning October 1, 2008, the Centers for Medicare & Medicaid Services (CMS) has
67	selected SSIs, including mediastinitis after CABG; certain orthopedic procedures (spine,
68	neck, shoulder, elbow); and bariatric surgery for obesity (laparoscopic gastric bypass,
69	gastroenterostomy, laparoscopic gastric restrictive surgery); as hospital-acquired
70	conditions that will no longer receive a higher reimbursement when not present on
71	admission. [CMS/HAC, 2008]
72	There is intense research of HAIs, and it will take time to understand the absolute
73	magnitude of preventability and the value of risk assessment methods; however, there is
74	full consensus that actions need to be taken now to reduce SSIs with what is currently
75	known. [Denham, 2005; Denham, 2009d]
76	
77	Safe Practice Statement
78	Take actions to prevent surgical-site infections by implementing evidence-based
79	intervention practices. [Mangram, 1999; WHO, 2008; IHI, 2009b; JCR, 2010]
80	
81	Additional Specifications
82	 Document the education of healthcare professionals, including nurses and
83	physicians, involved in surgical procedures about healthcare-acquired infections,
84	surgical-site infections (SSIs), and the importance of prevention. Education occurs
85	upon hire and annually thereafter, and when involvement in surgical procedures is
86	added to an individual's job responsibilities. [Bratzler, 2004; Bratzler, 2006; TMIT,
87	2008; Chatzizacharias, 2009; Rosenthal, 2009]
88	 Prior to all surgical procedures, educate the patient and his or her family as
89	appropriate about SSI prevention. [Torpy, 2005; Schweon, 2006]
90	 Implement policies and practices that are aimed at reducing the risk of SSI that meet
91	regulatory requirements, and that are aligned with evidence-based standards (e.g.,
92	CDC and/or professional organization guidelines). [Mangram, 1999; Dellinger, 2005;
93	Bratzler, 2006; Anderson, 2008; WHO, 2009]

94	•	Conduct periodic risk assessments for SSI, select SSI measures using best practices or
95		evidence-based guidelines, monitor compliance with best practices or evidence-
96		based guidelines, and evaluate the effectiveness of prevention efforts. [Bratzler, 2006]
97	-	Ensure that measurement strategies follow evidence-based guidelines, and that SSI
98		rates are measured for the first 30 days following procedures that do not involve the
99		insertion of implantable devices, and for the first year following procedures that
100		involve the insertion of implantable devices. [Horan, 1992; Biscione, 2009]
101	-	Provide SSI rate data and prevention outcome measures to key stakeholders,
102		including senior leadership, licensed independent practitioners, nursing staff, and
103		other clinicians. [Mangram, 1999]
104	-	Administer antimicrobial agents for prophylaxis with a particular procedure or
105		disease according to evidence-based standards and guidelines for best practices.
106		[ASHP, 1999; Mangram, 1999; Antimicrobial, 2001; IHI, 2009a]
107		Administer intravenous antimicrobial prophylaxis within one hour before
108		incision to maximize tissue concentration (two hours are allowed for the
109		administration of vancomycin and fluoroquinolones). [Bratzler, 2004; Bratzler,
110		<mark>2006]</mark>
111		Discontinue the prophylactic antimicrobial agent within 24 hours after surgery
112		(within 48 hours is allowable for cardiothoracic procedures). [Bratzler, 2004;
113		Bratzler, 2006]
114	•	When hair removal is necessary, use clippers or depilatories. Note: Shaving is an
115		inappropriate hair removal method. [Mangram, 1999]
116	•	Maintain normothermia (temperature >36.0°C) immediately following colorectal
117		surgery. [Kurz, 1996]
118	•	Control blood glucose during the immediate postoperative period for cardiac
119		surgery patients. [Bratzler, 2006; Dronge, 2006; Kao, 2009]
120	-	Preoperatively, use chlorhexidine gluconate 2% and isopropyl alcohol solution as
121		skin antiseptic preparation, and allow appropriate drying time per product
122		<mark>guidelines.</mark> [Darouiche, 2008; Darouiche, 2010]
123		

124	Applicable Clinical Care Settings
125	This practice is applicable to Centers for Medicare & Medicaid Services (CMS) care
126	settings, to include ambulatory surgical center and inpatient service/hospital.
127	
128	Example Implementation Approaches
129	 Perform expanded SSI surveillance to determine the source and extent of high SSI
130	rates despite implementation of basic SSI prevention strategies. Consider expanding
131	surveillance to include additional procedures, and possibly all National Healthcare
132	Safety Network (NHSN) procedures. [Mangram, 1999]
133	 Implementation of the WHO 19-item surgical safety checklist has been estimated to
134	save the lives of 1 in 144 surgical patients. [Haynes, 2009]
135	 Hospitals that have been successful in reducing SSIs have incorporated some, if not
136	all, of the following elements as part of their prevention strategies and approaches:
137	[Graf, 2009]
138	• Appropriate and timely use of prophylactic antibiotics. [AHRQ, 2009a; AHRQ,
139	2009b; Pan, 2009; Ryckman, 2009]
140	• Identify and treat all infections remote to the surgical site before elective surgery,
141	and postpone elective surgeries until the infection has resolved.
142	Utilize mechanical and intraluminal antibiotic bowel preparation for patients
143	undergoing elective colorectal surgery, as appropriate per patient clinical case.
144	The literature is evolving and patients should be treated according to the latest
145	evidence based practices. [Wille-Jørgensen, 2005; Guenaga, 2009; Howard, 2009;
146	Slim, 2009]
147	Administer a prophylactic antimicrobial agent to patients, based on published
148	guidelines and recommendations targeting the most common pathogens for the
149	planned procedure.
150	Give appropriate weight-based guideline antibiotic dosing.
151	Ensure optimal antibiotic concentration by redosing based on antimicrobial agent
152	half-life and length of procedure.
153	Utilize an intravenous route to administer prophylactic antimicrobial agents and
154	antibiotics so that a bactericidal concentration is established in serum and tissues

155		1 11
155	when the incision is made (except for cesarean delivery, when antibio	tics should
156	be administered after cord clamp).	
157	1. Give an intraoperative dose of antibiotic as indicated based on	
158	pharmacokinetics of the antibiotic and length of the surgical proce	dure.
159	2. If a cuff or tourniquet is used, fully infuse the antibiotic prior to in	flation.
160	3. Use preprinted or computerized standing orders that specify antib	viotic,
161	timing, dose, and discontinuation.	
162	4. Change operating room drug stocks to include only standard dose	es and
163	standard drugs that reflect national guidelines.	
164	5. Assign antibiotic dosing responsibilities to the anesthesia or holdin	ng area
165	nurse to improve timeliness.	
166	6. Use visible reminders, checklists, and stickers.	
167	7. Involve pharmacy, infection control, and infectious disease staff to	ensure
168	appropriate selection, timing, and duration.	
169	Appropriate hair removal:	
170	- Remove hair from the incision site only if the hair interferes with t	he
171	operation.	
172	- Educate patients not to shave themselves preoperatively. [Pan, 200)9]
173	Appropriate skin preparation:	
174	- Chlorhexidine gluconate 2% skin solutions have been shown to be	more
175	effective than iodine in reducing SSI. [Darouiche, 2008; Eiselt, 2009);
176	Darouiche, 2010]	
177	Maintenance of postoperative glucose control:	
178	- Implement a glucose control protocol.	
179	- Regularly check preoperative blood glucose levels on all patients.	
180	- Assign responsibility and accountability for blood glucose monitor	ring and
181	control.	
182	Establish postoperative normothermia, and maintain perioperative eu	thermia,
183	based on the constellation of benefits beyond SSI for colorectal surgery	y patients.
184	- Use warmed forced-air blankets preoperatively, during surgery, as	nd in the
185	post-anesthesia care unit (PACU).	

	SAFE PRACTICE 22: SURGICAL-SITE INFECTION PREVENTION
	 Increase the ambient temperature in the operating room.
	- Use warming blankets under patients on the operating table.
	- Use hats and booties on patients perioperatively.
c	Strategies of Progressive Organizations
	Some organizations advocate maintaining perioperative glucose at specific target levels for patients with Type 1 Diabetes and for those who have Type 2 Diabetes
_	with insulin deficiency.
•	Establish implementation of perioperative supplemental oxygen therapy. [Casey, 2009; Qadan, 2009]
	2009, Qadall, 2009]
(Opportunities for Patient and Family Involvement [Denham, 2008; SHEA,
	N.D.]
	serve on appropriate patient safety or performance improvement committees.
	for preventing infection.
-	Teach patients and families to recognize the signs and symptoms of infection.
-	Encourage patients to report changes in their surgical site or any new discomfort.
	Encourage patients and family members to make sure that doctors and nurses check
	the site every day for signs of infection.
	Invite patients to ask staff if they have washed their hands prior to treatment.
	Encourage patients and family members to ask questions before a surgical procedure
	is performed.
(Dutcome, Process, Structure, and Patient-Centered Measures
]	These performance measures are suggested for consideration to support internal
ł	nealthcare organization quality improvement efforts, and may not necessarily all
ĉ	address external reporting needs.
•	Outcome Measures include trending the rate of SSIs per procedure over time and
	reporting SSIs as part of a multicenter registry, for example, NHSN. [NHSN, N.D.]

Attachment A

217	Also consider trending operational and financial outcomes associated with reduction
218	in SSI patient complications. Use NHSN definitions where appropriate. [NHSN,
219	N.D.]
220	 National Quality Forum (NQF)-endorsed[®] outcome measures:
221	1. #0130: Deep Sternal Wound Infection Rate [Hospital]: Percent of patients
222	undergoing isolated CABG who developed deep sternal wound infection
223	within 30 days post-operatively.
224	2. #0299: Surgical-site infection rate [Hospital]: Percentage of surgical site
225	infections occurring within thirty days after the operative procedure if no
226	implant is left in place or with one year if an implant is in place in patients
227	who had an NHSN operative procedure performed during a specified time
228	period and the infection appears to be related to the operative procedure.
229	3. #0450: Postoperative DVT or PE: Percent of adult surgical discharges with a
230	secondary diagnosis code of deep vein thrombosis or pulmonary embolism.
231	Process Measures include periodic assessment of compliance with all components of
232	the prevention bundle, with actions to mitigate performance gaps.
233	NQF-endorsed [®] process measures:
234	1. #0125: Timing of Antibiotic Prophylaxis for Cardiac Surgery Patients
235	[Hospital]: Percent of patients undergoing cardiac surgery who received
236	prophylactic antibiotics within one hour prior to of surgical incision (two
237	hours if receiving vancomycin).
238	2. #0126: Selection of Antibiotic Prophylaxis for Cardiac Surgery Patients
239	[Hospital]: Percent of patients undergoing cardiac surgery who received
240	prophylactic antibiotics recommended for the operation.
241	3. #0128: Duration of Prophylaxis for Cardiac Surgery Patients [Hospital]:
242	Percent of patients undergoing cardiac surgery whose prophylactic
243	antibiotics were discontinued within 24 hours after surgery end time.
244	4. #0264: Prophylactic Intravenous (IV) Antibiotic Timing [Hospital,
245	Ambulatory Surgical Centers]: Percentage of ASC patients who received IV
246	antibiotics ordered for surgical site infection prophylaxis on time.

247	5.	#0269: Timing of Prophylactic Antibiotics - Administering Physician
248		[Hospital, Ambulatory Surgical Centers]: Percentage of surgical patients aged
249		> 18 years with indications for prophylactic parenteral antibiotics for whom
250		administration of the antibiotic has been initiated within one hour (if
251		vancomycin, two hours) prior to the surgical incision or start of procedure
252		when no incision is required.
253	6.	#0270: Timing of Antibiotic Prophylaxis: Ordering Physician [Hospital,
254		Ambulatory Surgical Centers]: Percentage of surgical patients aged 18 years
255		and older undergoing procedures with the indications for prophylactic
256		parenteral antibiotics, who have an order for prophylactic antibiotic to be
257		given within one hour (if fluoroquinolone or vancomycin, two hours), prior
258		to the surgical incision (or start of procedure when no incision is required).
259	7.	#0271: Discontinuation of Prophylactic Antibiotics (Non-Cardiac Procedures)
260		[Hospital, Ambulatory Surgical Centers]: Percentage of non- cardiac surgical
261		patients aged 18 years and older undergoing procedures with the indications
262		for prophylactic antibiotics AND who received a prophylactic antibiotic, who
263		have an order for discontinuation of prophylactic antibiotics within 24 hours
264		of surgical end time.
265	8.	#0472: Prophylactic Antibiotic Received Within One Hour Prior to Surgical
266		Incision or at the Time of Delivery - Cesarean section [Hospital]: Percentage
267		of patients undergoing cesarean section who receive prophylactic antibiotics
268		within one hour prior to surgical incision or at the time of delivery.
269	9.	#0527: Prophylactic antibiotic received within 1 hour prior to surgical
270		incision SCIP-Inf-2.
271	10	. #0528: Prophylactic antibiotic selection for surgical patients.
272	11	. #0529: Prophylactic antibiotics discontinued within 24 hours after surgery
273		end time.
274	12	. #0301: Surgery patients with appropriate hair removal [Hospital]:
275		Percentage of surgery patients with surgical hair site removal with clippers
276		or depilatory or no surgical site hair removal.

Attachment A

277	13. #0515: Ambulatory surgery patients with appropriate method of hair
278	removal [Ambulatory Care (office/clinic)]: Percentage of ASC admissions
279	with appropriate surgical site hair removal.
280	14. #0300: Cardiac surgery patients with controlled 6 A.M. postoperative serum
281	glucose: Percentage of cardiac surgery patients with controlled 6 A.M. serum
282	glucose ($ mg/dl) on postoperative day (POD) 1 and POD 2.$
283	15. #0452: Surgery patients with perioperative temperature management:
284	Surgery patients for whom either active warming was used intraoperatively
285	for the purpose of maintaining normothermia, or who had at least one body
286	temperature equal to or greater than 96.8° F/36° C recorded within the 30
287	minutes immediately prior to or the 15 minutes immediately after anesthesia
288	end time.
289	16. #0218: Surgery patients who received appropriate VTE prophylaxis within 24
290	hours prior to surgery to 24 hours after surgery end time: Percentage of
291	surgery patients who received appropriate Venous Thromboembolism (VTE)
292	Prophylaxis within 24 hours prior to surgery to 24 hours after surgery end
293	time.
294	17. #0239: Venous Thromboembolism (VTE) Prophylaxis [Hospital]: Percentage
295	of patients aged 18 years and older undergoing procedures for which VTE
296	prophylaxis is indicated in all patients, who had an order for Low Molecular
297	Weight Heparin (LMWH), Low-Dose Unfractionated Heparin (LDUH),
298	adjusted-dose warfarin, fondaparinux or mechanical prophylaxis to be given
299	within 24 hours prior to incision time or within 24 hours after surgery end
300	time.
301	18. #0371: Venous Thromboembolism (VTE) Prophylaxis [Hospital]: This
302	measure assesses the number of patients who received VTE prophylaxis or
303	have documentation why no VTE prophylaxis was given the day of or the
304	day after hospital admission or surgery end date for surgeries that start the
305	day of or the day after hospital admission.
306	19. #0372: Intensive Care Unit (ICU) VTE Prophylaxis [Hospital]: This measure
307	assesses the number of patients who received VTE prophylaxis or have

308	documentation why no VTE prophylaxis was given the day of or the day
309	after the initial admission (or transfer) to the Intensive Care Unit (ICU) or
310	surgery end date for surgeries that start the day of or the day after ICU
311	admission (or transfer).
312	20. #0376: Incidence of Potentially Preventable VTE [Hospital]: This measure
313	assesses the number of patients diagnosed with confirmed VTE during
314	hospitalization (not present on arrival) who did not receive VTE prophylaxis
315	between hospital admission and the day before the VTE diagnostic testing
316	order date.
317	Structure Measures include verification that monitoring documentation
318	incorporates the identification, stratification, and trending of specific risk factors of
319	patients who have developed a SSI to determine the success of mitigation strategies.
320	Patient-Centered Measures include evidence of education about the patient's role in
321	perioperative infection risk reduction.
322	
323	Settings of Care Considerations
324	• Rural Healthcare Settings: All requirements of the practice are applicable to rural
325	settings where invasive procedures are performed.
326	Children's Healthcare Settings: All requirements of the practice are applicable to
327	children's healthcare settings where invasive procedures are performed.
328	• Specialty Healthcare Settings: All requirements of the practice are applicable to
329	specialty settings where invasive procedures are performed.
330	
331	New Horizons and Areas for Research
332	Further research is required to discern the optimal timing and use of antibiotics for
333	specific patient profiles; the effectiveness of preoperative bathing with chlorhexidine-
334	containing products; [Miller, 1996; Perl, 2002; Wilcox, 2003; Kallen, 2005; Nicholson,
335	2005] the effectiveness of routine screening for MRSA [Gould, 2009; Yano, 2009] and
336	routine attempts to decolonize surgical patients with an antistaphylococcal agent in the
337	preoperative setting; best strategies and evidence for maintaining oxygenation with
338	supplemental oxygen during and following colorectal procedures; [Al-Niaimi, 2009;

339	Casey, 2009; Qadan, 2009] and the validity of preoperative intranasal and pharyngeal
340	chlorhexidine treatment for patients undergoing cardiothoracic procedures. [Segers,
341	2006] Some organizations have learned from other industries, such as the food industry,
342	and explored increasing the vigilance of environmental cleaning of high-contact surfaces
343	in patient rooms, such as television remote control devices, and operating room
344	equipment and devices, such as pulse oximeters that are shared or used across multiple
345	patients. Other environmental design issues may have real importance to reducing
346	preventable infections in the future. National harmonization efforts are being
347	undertaken to optimize safety during the pre-operative, intra-operative, and post-
348	operative periods, broadening the scope of a systematic approach to safe care of the
349	surgical patient. [NPP, 2009]
350	
351	Other Relevant Safe Practices
352	Refer to Safe Practice 1: Leadership Structures and Systems; Safe Practice 2: Culture
353	Measurement, Feedback, and Intervention; Safe Practice 3: Teamwork Training and Skill
354	Building; and Safe Practice 4: Identification and Mitigation of Risks and Hazards. Safe
355	Practice 19: Hand Hygiene, is the cornerstone of an organization's infection control
356	program. Implementing Safe Practice 24: Multidrug-Resistant Organism Prevention, will
357	also reduce infections by using standard evidence-based practice prevention.
358	
359	References

360

SP 22 Text Cite	SP 22 SSI Prevention Full Citation
AHRQ, 2009a	[No authors listed.] National Healthcare Disparities Report 2008. Agency for Healthcare Research and Quality (AHRQ). 2009 Mar. Available at http://www.ahrq.gov/qual/nhdr08/nhdr08.pdf. Last accessed October 30, 2009.
AHRQ, 2009b	[No authors listed.] National Healthcare Quality Report 2008. Agency for Healthcare Research and Quality (AHRQ). 2009 Mar. Available at http://www.ahrq.gov/qual/nhqr08/nhqr08.pdf. Last accessed October 30, 2009.
Al-Niaimi, 2009	Al-Niaimi A, Safdar N. Supplemental perioperative oxygen for reducing surgical site infection: a meta-analysis. J Eval Clin Pract 2009 Apr;15(2):360-5.
Anderson, 2008	Anderson DJ, Kaye KS, Classen D, et al. Strategies to prevent surgical site infections in acute care hospitals. Infect Control Hosp Epidemiol 2008 Oct;29 Suppl 1:S51-61. Available at http://www.journals.uchicago.edu/doi/pdf/10.1086/591064. Last accessed October 7, 2009.
Antimicrobial, 2001	[No authors listed.] Antimicrobial prophylaxis in surgery. Med Lett Drugs Ther 2001 Oct 29;43(1116-1117):92-7.

ASHP, 1999	ASHP Therapeutic Guidelines on Antimicrobial Prophylaxis in Surgery. American Society of Health-System Pharmacists. Am J Health Syst Pharm 1999;56(18):1839-88.
Biscione, 2009	Biscione FM, Couto RC, Pedrosa TM. Accounting for incomplete postdischarge follow-up during surveillance of surgical site infection by use of the National Nosocomial Infections Surveillance system's risk index. Infect Control Hosp Epidemiol 2009 May;30(5):433-9.
Bratzler, 2004	Bratzler DW, Houck PM, et al. Antimicrobial prophylaxis for surgery: an advisory statement from the National Surgical Infection Prevention Project. Clin Infect Dis 2004 Jun 15;38(12):1706-15. Epub 2004 May 26. Available at http://www.journals.uchicago.edu/doi/pdf/10.1086/421095. Last accessed October 7, 2009.
Bratzler, 2006	Bratzler DW, Hunt DR. The surgical infection prevention and surgical care improvement projects: national initiatives to improve outcomes for patients having surgery. Clin Infect Dis 2006 Aug 1;43(3):322-30. Epub 2006 Jun 16. Available at http://www.journals.uchicago.edu/doi/pdf/10.1086/505220. Last accessed October 7, 2009.
Casey, 2009	Casey AL, Elliott TS. Progress in the prevention of surgical site infection. Curr Opin Infect Dis 2009 Aug;22(4):370-5.
Chatzizacharias, 2009	Chatzizacharias NA, Chapple K. Doctors' compliance with hand hygiene guidelines in the surgical ward. Infect Control Hosp Epidemiol 2009 Mar:30(3):308-9.
CMS/HAC, 2008	Centers for Medicare & Medicaid Services. Hospital-Acquired Conditions (Present on Admission Indicator) Overview. Available at http://www.cms.hhs.gov/hospitalacqcond/. Last accessed October 30, 2009.
Coello, 1993	Coello R, Glenister H, Fereres J, et al. The cost of infection in surgical patients: a case-control study. J Hosp Infect 1993 Dec;25(4):239-50.
Cruse, 1980	Cruse PJ, Foord R. The epidemiology of wound infection. A 10-year prospective study of 62,939 wounds. Surg Clin North Am 1980 Feb;60(1):27-40.
Cruse, 1981	Cruse P. Wound infection surveillance. Rev Infect Dis 1981 Jul-Aug;3(4):734-7.
Darouiche, 2008	Darouiche R, Wall M, Itani K, et al. A comparison of two antiseptic preparations for prevention of surgical site infections. Abstract #K-601a. Washington, DC: The 48th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) and the 46th Annual Meeting of the Infectious Disease Society of America (IDSA); 2008.
Darouiche, 2010	Darouiche RO, Wall MJ, Itani KMF, et al. Chlorhexidine-alcohol versus povidone-iodine for surgical-site antisepsis. N Engl J Med 2010 Jan 7;362(1):18-26.
de Lissovoy, 2009	de Lissovoy G, Fraeman K, Hutchins V, et al. Surgical site infection: incidence and impact on hospital utilization and treatment costs. Am J Infect Control 2009 Jun;37(5):387-97. Epub 2009 Apr 23.
Dellinger, 2005	Dellinger EP, Hausmann SM, Bratzler DW, et al. Hospitals collaborate to decrease surgical site infections. Am J Surg 2005 Jul;190(1):9-15.
Denham, 2005	Denham CR, Bagian J, Daley J, et al. No excuses: the reality that demands action. J Patient Saf 2005 Sep;1(3):154-69.
Denham, 2008 Denham, 2009a	Denham CR. SBAR for patients. J Patient Saf 2008 Mar;4(1):38-48. Denham CR, Angood P, Berwick D, et al. Chasing Zero: can reality meet the rhetoric? J Patient Saf 2009 Dec;5(4):216-22.
Denham, 2009b	Denham CR, Angood P, Berwick D, et al. The Chasing Zero Department: making idealized design a reality. J Patient Saf 2009 Dec;5(4):210-5.
Denham, 2009c	Denham CR. Green light issues for the CFO: investing in patient safety. J Patient Saf 2010 Mar;6(1):Pending.
Denham, 2009d	Denham CR. Are you infected? J Patient Saf 2009 Sep;5(3):188-96.
Dronge, 2006	Dronge AS, Perkal MF, Kancir S, et al. Long-term glycemic control and postoperative infectious complications. Arch Surg 2006 Apr;141(4):375-80; discussion 380.
Eiselt, 2009	Eiselt D. Presurgical skin preparation with a novel 2% chlorhexidine gluconate cloth reduces rates of surgical site infection in orthopaedic surgical patients. Orthop Nurs 2009 May-Jun;28(3):141-5.

Engemann, 2003	Engemann JJ, Carmeli Y, Cosgrove SE, et al. Adverse clinical and economic	
	outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin Infect Dis 2003 Mar 1; 36(5):	
	592-8. Epub 2003 Feb 7. Available at http://www.journals.uchicago.edu/doi/pdf/10.1086/367653. Last accessed October 7, 2009.	
Gould, 2009	Gould FK, Brindle R, Chadwick PR, et al. Guidelines (2008) for the prophylaxis and treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in the United Kingdom. J Antimicrob Chemother 2009 May;63(5):849-61. Epub	
Crot 2000	2009 Mar 12. Graf K, Sohr D, Haverich A, et al. Decrease of deep sternal surgical site	
Graf, 2009	infection rates after cardiac surgery by a comprehensive infection control program. Interact Cardiovasc Thorac Surg 2009 Aug;9(2):282-6. Epub 2009 May 5. Available at http://icvts.ctsnetjournals.org/cgi/reprint/9/2/282. Last accessed October 7, 2009.	
Guenaga, 2009	Guenaga KK, Matos D, Wille-Jørgensen P. Mechanical bowel preparation for elective colorectal surgery. Cochrane Database Syst Rev 2009 Jan 21;(1):CD001544.	
Haynes, 2009	Haynes HR, Weiser TG, Berry WR, et al. A Surgical Safety Checklist to Reduce Morbidity and Mortality in a Global Population. N Engl J Med 2009;360:491-9. Epub 2009 Jan 14. Available at http://content.nejm.org/cgi/reprint/360/5/491.pdf. Last accessed September 28, 2009.	
Hollenbeak, 2000	Hollenbeak CS, Murphy DM, Koenig S, et al. The clinical and economic impact of deep chest surgical site infections following coronary artery bypass graft surgery. Chest 2000 Aug;118(2):397-402. Available at http://www.chestjournal.org/cgi/content/full/118/2/397. Last accessed October 7, 2009.	
Horan, 1992	Horan TC, Gaynes RP, Martone WJ, et al. CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Infect Control Hosp Epidemiol 1992 Oct;13(10):606-8.	
Howard, 2009	Howard DD, White CQ, Harden TR, et al. Incidence of surgical site infections postcolorectal resections without preoperative mechanical or antibiotic bowel preparation. Am Surg 2009 Aug;75(8):659-63; discussion 663-4.	
IHI, 2009a	[No authors listed.] Antibiotic Stewardship. IHI Improvement Map. Cambridge (MA): Institute for Healthcare Improvement (IHI); 2009. Available at http://www.ihi.org/imap/tool/#Process=584d97d9-d698-478f-8a10-ee60362d7462. Last accessed October 26, 2009.	
IHI, 2009b	[No authors listed.] Surgical Complications Core Processes (SCIP). IHI Improvement Map. Cambridge (MA): Institute for Healthcare Improvement (IHI); 2009. Available at http://www.ihi.org/imap/tool/#Process=9102c77f-e32e- 4677-be9f-a5dbf8329940. Last accessed October 26, 2009.	
JCR, 2010	Joint Commission Resources (JCR). 2010 Comprehensive Accreditation Manual: CAMH for Hospitals: The Official Handbook. National Patient Safety Goal NPSG.07.05.01. Oak Brook (IL): Joint Commission Resources; 2010.	
Kallen, 2005	Kallen AJ, Wilson CT, Larson RJ. Perioperative intranasal mupirocin for the prevention of surgical-site infections: systematic review of the literature and meta-analysis. Infect Control Hosp Epidemiol 2005 Dec;26(12):916-22. Available at http://www.journals.uchicago.edu/doi/pdf/10.1086/505453. Last accessed October 7, 2009.	
Kao, 2009	Kao LS, Meeks D, Moyer VA, et al. Peri-operative glycaemic control regimens for preventing surgical site infections in adults. Cochrane Database Syst Rev 2009 Jul 8;(3):CD006806.	
Kirby, 2009	Kirby JP, Mazuski JE. Prevention of surgical site infection. Surg Clin North Am 2009 Apr;89(2):365-89, viii.	
Kirkland, 1999	Kirkland KB, Briggs JP, Trivette SL, et al. The impact of surgical-site infections in the 1990s: attributable mortality, excess length of hospitalization, and extra costs. Infect Control Hosp Epidemiol 1999 Nov;20(11):725-30. Available at http://www.journals.uchicago.edu/doi/pdf/10.1086/501572. Last accessed October 7, 2009.	
Klevens, 2007	Klevens RM, Edwards JR, Richards CL Jr, et al. Estimating health care- associated infections and deaths in U.S. hospitals, 2002. Public Health Rep 2007 Mar-Apr;122(2):160-72.	

Kurz, 1996	Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J Med 1996 May 9;334(19):1209-15. Available at http://content.nejm.org/cgi/reprint/334/19/1209.pdf. Last accessed October 7, 2009.	
Levinson, 2008	Levinson D. Department of Health and Human Services. Office of Inspector General. Adverse events in hospitals: state reporting systems. 2008 Dec. OEI- 06-07-00471. Available at http://www.oig.hhs.gov/oei/reports/oei-06-07- 00471.pdf. Last accessed October 7, 2009.	
Mangram, 1999	Mangram AJ, Horan TC, Pearson ML, et al. Guideline for prevention of surgical site infection, 1999. Hospital Infection Control Practices Advisory Committee. Infect Control Hosp Epidemiol 1999 Apr;20(4):250-78; quiz 279-80. Atlanta (GA):Centers for Disease Control and Prevention; 1999. Available at http://www.cdc.gov/ncidod/dhqp/gl_surgicalsite.html. Last accessed October 26, 2009.	
Miller, 1996	Miller MA, Dascal A, Portnoy J, et al. Development of mupirocin resistance among methicillin-resistant Staphylococcus aureus after widespread use of nasal mupirocin ointment. Infect Control Hosp Epidemiol 1996 Dec;17(12):811- 3.	
NHSN, N.D.	National Healthcare Safety Network (NHSN). Available at http://www.cdc.gov/nhsn/index.html. Last accessed October 7, 2009.	
Nicholson, 2005	Nicholson MR, Huesman LA. Controlling the usage of intranasal mupirocin does impact the rate of Staphylococcus aureus deep sternal wound infections in cardiac surgery patients. Am J Infect Control 2006 Feb;34(1):44-8.	
NPP, 2009	National Priorities Partnership. National Quality Forum. Available at http://www.nationalprioritiespartnership.org/Home.aspx. Last accessed October 15, 2009.	
Pan, 2009	Pan A, Ambrosini L, Patroni A, et al. Adherence to surgical site infection guidelines in Italian cardiac surgery units. Infection 2009 Apr;37(2):148-52. Epub 2009 Mar 23.	
Perl, 2002	Perl TM, Cullen JJ, Wenzel RP, et al. Intranasal mupirocin to prevent postoperative Staphylococcus aureus infections. N Engl J Med 2002 Jun 13;346(24):1871-7. Available at http://content.nejm.org/cgi/reprint/346/24/1871.pdf. Last accessed October 7, 2009.	
PHC4, 2008	Pennsylvania Health Care Cost Containment Council. Statewide Summary Data Calendar Year 2006. Available at http://www.phc4.org/reports/hai/06/docs/hai2006statewidesummary.pdf. Last accessed October 7, 2009.	
Qadan, 2009	Qadan M, Akça O, Mahid SS, et al. Perioperative supplemental oxygen therapy and surgical site infection: a meta-analysis of randomized controlled trials. Arch Surg 2009 Apr;144(4):359-66; discussion 366-7.	
Quinn, 2009	Quinn A, Hill AD, Humphreys H. Evolving issues in the prevention of surgical site infections. Surgeon 2009 Jun;7(3):170-2.	
Rosenthal, 2009	Rosenthal R, Weber WP, Zwahlen M, et al. Impact of surgical training on incidence of surgical site infection. World J Surg 2009 Jun;33(6):1165-73.	
Ryckman, 2009	Ryckman FC, Schoettker PJ, Hays KR, et al. Reducing surgical site infections at a pediatric academic medical center. Jt Comm J Qual Patient Saf 2009 Apr;35(4):192-8.	
Schweon, 2006	Schweon S. Stamping out surgical site infections. RN 2006 Aug;69(8):36-40; quiz 41. Available at http://rn.modernmedicine.com/rnweb/article/article/Detail.jsp?id=362478. Last accessed October 7, 2009.	
Scott, 2009	Scott RD. The direct medical costs of healthcare-associated infections in U.S. hospitals and the benefits of prevention. Atlanta (GA):Centers for Disease Control and Prevention (CDC); 2009 March. Available at http://www.cdc.gov/ncidod/dhqp/pdf/Scott_CostPaper.pdf. Last accessed October 28, 2009.	
Segers, 2006	Segers P, Speekenbrink RG, Ubbink DT, et al. Prevention of nosocomial infection in cardiac surgery by decontamination of the nasopharynx and oropharynx with chlorhexidine gluconate: a randomized controlled trial. JAMA 2006 Nov 22;296(20):2460-6. Available at http://jama.ama-assn.org/cgi/content/full/296/20/2460. Last accessed October 7, 2009.	

SHEA, N.D.	[No authors listed.] FAQs (Frequently Asked Questions) about "Surgical Site Infections". Arlington (VA): Society for Healthcare Epidemiology of America [SHEA]; No Date. Available at http://www.shea- online.org/Assets/files/patient%20guides/NNL_SSI.pdf. Last accessed October 26, 2009.	
Slim, 2009	Slim K, Vicaut E, Launay-Savary MV, et al. Updated systematic review and meta-analysis of randomized clinical trials on the role of mechanical bowel preparation before colorectal surgery. Ann Surg 2009 Feb;249(2):203-9.	
TMIT, 2008	TMIT. Are You Preventing Surgical-Site Infections? No Outcome, No Income. TMIT High Performer Webinar presented 2008 Feb 25. Available at http://www.safetyleaders.org/pages/idPage.jsp?ID=4872. Last accessed October 26, 2009.	
Torpy, 2005	Torpy JM, Burke A, Glass RM. JAMA patient page. Wound infections. JAMA 2005 Oct 26;294(16):2122. Available at http://jama.ama-assn.org/cgi/content/full/294/16/2122. Last accessed October 7, 2009.	
Vegas, 1993	Vegas AA, Jodra VM, García ML. Nosocomial infection in surgery wards: a controlled study of increased duration of hospital stays and direct cost of hospitalization. Eur J Epidemiol 1993 Sep;9(5):504-10.	
WHO, 2008	[No authors listed.] WHO surgical safety checklist and implementation manual. Geneva (Switzerland): World Health Organization (WHO)/World Alliance for Patient Safety; 2008. Available at http://www.who.int/patientsafety/safesurgery/ss_checklist/en/index.html. Last accessed October 7, 2009.	
WHO, 2009	[No authors listed.] WHO Guidelines on Hand Hygiene in Health Care. First Global Patient Safety Challenge. Clean Care is Safer Care. Geneva (Switzerland): World Health Organization/Patient Safety: A World Alliance for Safer Health Care; 2009. Available at http://whqlibdoc.who.int/publications/2009/9789241597906_eng.pdf. Last accessed October 12, 2009.	
Wilcox, 2003	Wilcox MH, Hall J, Pike H, et al. Use of perioperative mupirocin to prevent methicillin-resistant Staphylococcus aureus (MRSA) orthopaedic surgical site infections. J Hosp Infect 2003 Jul;54(3):196-201.	
Wille-Jørgensen, 2005	Wille-Jørgensen P, Guenaga KF, Matos D, et al. Pre-operative mechanical bowel cleansing or not? an updated meta-analysis. Colorectal Dis 2005 Jul;7(4):304-10.	
Yano, 2009	Yano K, Minoda Y, Sakawa A, et al. Positive nasal culture of methicillin- resistant Staphylococcus aureus (MRSA) is a risk factor for surgical site infection in orthopedics. Acta Orthop 2009 Jan 1:1-5. [Epub ahead of print] Available at http://pdfserve.informaworld.com/251334913080445.pdf. Last accessed October 26, 2009.	
KEYWORDS for PubMed search	"surgical-site infection"; "surgical site infection"; 2009	

361

Summary of Evidence:

CDC Guidelines. The 1999 CDC Guideline for Prevention of Surgical Site Infection speaks to chlorhexidine and povidone-iodine preparations for both preoperative antiseptic showering and for patient skin preparation in the operating room, referencing a number of citations. The relevant text follows:

Preoperative antiseptic showering. A preoperative antiseptic shower or bath decreases skin microbial colony counts. In a study of >700 patients who received two preoperative antiseptic showers, chlorhexidine reduced bacterial colony counts ninefold (2.8x10² to 0.3), while povidone-iodine or triclocarbanmedicated soap reduced colony counts by 1.3- and 1.9-fold, respectively. Other studies corroborate these findings. Chlorhexidine gluconate-containing products require several applications to attain maximum antimicrobial benefit, so repeated antiseptic showers are usually indicated. Even though preoperative showers reduce the skin's microbial colony counts, they have not definitively been shown to reduce SSI rates.

Patient skin preparation in the operating room. Several antiseptic agents are available for preoperative preparation of skin at the incision site. The iodophors (e.g., povidone-iodine), alcohol-containing products, and chlorhexidine gluconate are the most commonly used agents. No studies have adequately assessed the comparative effects of these preoperative skin antiseptics on SSI risk in well-controlled, operation-specific studies. ...

Both chlorhexidine gluconate and iodophors have broad spectra of antimicrobial activity. In some comparisons of the two antiseptics when used as preoperative hand scrubs, chlorhexidine gluconate achieved greater reductions in skin microflora than did povidone-iodine and also had greater residual activity after a single application. Further, chlorhexidine gluconate is not inactivated by blood or serum proteins, but exert a bacteriostatic effect as long as they are present on the skin.

Source (citation)	Study Objective	Population and Methods	Findings	Notes
Swenson BR, Hedrick TL,	To compare effects	Single-center, unblinded, non-randomized protocol	Lowest infection rate in	Compliance with use
Metzger R, et al. Effects of	of different skin	implementation comparison in context of overall risk	period 3 (3.9%	of 2% chlorhexidine -
Preoperative Skin Preparation	preparation	reduction program.	compared with 6.4% (1)	70% isopropyl alcohol
on Postoperative Wound	solutions on surgical		& 7.1% (2). P=.002.	as well as iodine
Infection Rates: A Prospective	site infection rates.	From 1/1/2006 – 6/30/2007 compared SSI rates in		povacrylex in
Study of 3 Skin Preparation		adults (18 and up) undergoing general surgery (GI,	Use of iodophor-based	isopropyl alcohol
Protocols. Infect Control Hosp		colorectal, breast, oncologic, hepatobiliary,	preparation associated	preps was in 70%
Epidemiol 2009; 30:964-971.		transplant, or endocrine) in a single large academic	with lower, but not	range.
		medical center who received one of 3 skin	statistically significant	
		preparations.	different, incidence of	
			SSI	
		Cases included elective & emergent; inpatients,		
		outpatients, & those admitted following procedure.		
		Pts who did not receive assigned prep were also		
		followed.		

Darouiche RO, Wall MJ, Itani KMF, et al. Chlorhexidine- alcohol versus povidone- iodine for surgical-site antisepsis. N Engl J Med 2010 Jan 7;362(1):18-26.	To compare effectiveness of chlorhexidine- alcohol (ChloraPrep) to povidone-iodine (Scrub Care Skin Prep Tray) as preoperative skin cleansing agent	 Over 18 months and 3,209 operations, compared 3 skin preparations sequentially, each for 6 month period: 1. Betadine scrub-pain w/isopropyl alcohol between; 2. ChloraPrep; 3. DuraPrep) – each was identified as the preferred modality. Tracked for SSIs for 30 days. Prep methods varied; no information whether due to mfg. recommendations. Prep method outcomes analysis dichotomized two groups to a single iodophor-based group and compared to chlorhexidine-based group after finding no significant difference in the two separate iodophor-based prepped groups Prospective, randomized (by hospital), six-center IRB approved clinical trial conducted between April 2004 and May 2008. Rates of SSI were conducted in 849 adults (age 18 and older) undergoing clean-contaminated surgery (colorectal, small intestinal, gastroesophageal, biliary, thoracic, gynecologic, urologic) in six university-affiliated hospitals who had skin prep using either chlorhexidine-alcohol (409) or povidone-iodine (440) was completed. All received prophylactic antibiotics within 1 hour before initial incision. Exclusions: Patients with history of allergy to chlorhexidine, alcohol, iodophor; evidence of infection at or adjacent to op site; perceived inability to follow patient's course for 30 days post surgery. Patients & site investigators who diagnosed SSI were unaware of group to which assigned 	Relative risk of infection was significantly lower in the chlorhexidine- alcohol "intention to treat" population Any SSI (0.59, p=0.004)) Superficial (0.48, p=0.008) Deep (0.33, p=0.05) Lower for each of the 7 types of surgeries studied	
--	---	--	---	--

Bibbo C, Patel DV, Gehrmann RM, et al. Chlorhexidine provides superior skin decontamination in foot and ankle surgery: a prospective randomized study. Clinical Orthopaedics and Related Research 2005 Sept 438:204- 208.	To compare effectiveness of two skin preparation methods in skin decontamination in foot and ankle surgery.	Prospective, randomized study in one facility. Study group included 127 patients ranging in age from 16 – 85 with intact, uninfected skin having clean elective foot and ankle surgery. Patients were randomly assigned to skin preparation with povidone-iodine (n=67) or with chlorhexidine scrub and isopropyl paint (n=60).	79% of patients in povidone-iodine group developed positive cultures vs 38% of those in chlorhexidine group.	
Miller J, Agarwal R, Umscheid CA, et al. Chlorhexidine versus povidone-iodine in skin antisepsis: a systematic review and cost analysis to inform initiatives to reduce hospital acquired infections. Poster session, University of Pennsylvania 2008.	To inform medical center purchasing decisions, efficacy and cost of chlorhexidine versus povidone-iodine in skin antisepsis was compared	Systenatic review of 9 rospective, randomized controlled clinical trial involving adults receiving topical antisepsis prior to surgery, blood cultures, and vascular or epidural catheter insertion. Compared chlorhexidine gluconate with and without alcohol with povidone iodine with and without alcohol 2 studies related to skin preparation prior to surgery (Berry, 1982 & Bibbo, 2005) were reviewed.	Reported efficacy of chlorhexidine vs. betadine in lowering infection or contamination rate of RR (random) 0.26 for the Berry study and 0.48 RR (random) for the Bibbo study with an overall of 0.38.	Included to represent additional evidence not found in review of scholarly articles.