Measure Number: IEP-015-10

Measure Title: Cardiac stress imaging not meeting appropriate use criteria: Routine testing after percutaneous coronary intervention (PCI)

Description: Percentage of all stress SPECT MPI, stress echo, CCTA and CMR performed routinely after PCI, with reference to timing of test after PCI and symptom status.

Numerator Statement: Number of stress SPECT MPI, stress echo, CCTA and CMR performed in asymptomatic patients within 2 years of the most recent PCI

Denominator statement: Number of stress SPECT MPI, stress echo, CCTA and CMR performed

Level of Analysis: Facility/Agency

Data Source: Paper medical record/flowsheet, Survey: Provider

Measure developer: American College of Cardiology Foundation

Type of Endorsement (full or time-limited): Full Endorsement

Attachments: N/A
This form contains the measure information submitted by stewards. Blank fields indicate no information was provided. Attachments also may have been submitted and are provided to reviewers. The sub-criteria and most of the footnotes from the evaluation criteria are provided in Word comments and will appear if your cursor is over the highlighted area (or in the margin if your Word program is set to show revisions in balloons). Hyperlinks to the evaluation criteria and ratings are provided in each section.

TAP/Workgroup (if utilized): Complete all yellow highlighted areas of the form. Evaluate the extent to which each sub-criterion is met. Based on your evaluation, summarize the strengths and weaknesses in each section.

Note: If there is no TAP or workgroup, the SC also evaluates the sub-criteria (yellow highlighted areas).

Steering Committee: Complete all pink highlighted areas of the form. Review the workgroup/TAP assessment of the sub-criterion, noting any areas of disagreement; then evaluate the extent to which each major criterion is met; and finally, indicate your recommendation for the endorsement. Provide the rationale for your ratings.

Evaluation ratings of the extent to which the criteria are met

- C = Completely (unquestionably demonstrated to meet the criterion)
- P = Partially (demonstrated to partially meet the criterion)
- M = Minimally (addressed BUT demonstrated to only minimally meet the criterion)
- N = Not at all (NOT addressed; OR incorrectly addressed; OR demonstrated to NOT meet the criterion)
- NA = Not applicable (only an option for a few sub-criteria as indicated)

<table>
<thead>
<tr>
<th>MEASURE DESCRIPTIVE INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>De.1 Measure Title: Cardiac stress imaging not meeting appropriate use criteria: Routine testing after percutaneous coronary intervention (PCI)</td>
</tr>
<tr>
<td>De.2 Brief description of measure: Percentage of all stress SPECT MPI, stress echo, CCTA and CMR performed routinely after PCI, with reference to timing of test after PCI and symptom status.</td>
</tr>
<tr>
<td>De.3 Type of Measure: efficiency/cost</td>
</tr>
<tr>
<td>De.4 National Priority Partners Priority Area: Overuse</td>
</tr>
<tr>
<td>De.5 IOM Quality Domain: efficiency</td>
</tr>
<tr>
<td>De.6 Consumer Care Need: Living With Illness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONDITIONS FOR CONSIDERATION BY NQF</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. The measure is in the public domain or an intellectual property (measure steward agreement) is signed.</td>
</tr>
<tr>
<td>Public domain only applies to governmental organizations. All non-government organizations must sign a measure steward agreement even if measures are made publicly and freely available.</td>
</tr>
<tr>
<td>A.1 Do you attest that the measure steward holds intellectual property rights to the measure and the right to use aspects of the measure owned by another entity (e.g., risk model, code set)? Yes</td>
</tr>
<tr>
<td>A.2 Indicate If Proprietary Measure (as defined in measure steward agreement): proprietary measure</td>
</tr>
<tr>
<td>A.3 Measure Steward Agreement: agreement signed and submitted</td>
</tr>
<tr>
<td>A.4 Measure Steward Agreement attached: MSA_ACCF-63398316363709094.pdf</td>
</tr>
</tbody>
</table>

Rating: C=Completely; P=Partially; M=Minimally; N=Not at all; NA=Not applicable
B. The measure owner/steward verifies there is an identified responsible entity and process to maintain and update the measure on a schedule that is commensurate with the rate of clinical innovation, but at least every 3 years. Yes, information provided in contact section

<table>
<thead>
<tr>
<th>Rating</th>
<th>B Y N</th>
</tr>
</thead>
</table>

C. The intended use of the measure includes both public reporting and quality improvement.

Purpose: public reporting, quality improvement Accreditation

<table>
<thead>
<tr>
<th>Rating</th>
<th>C Y N</th>
</tr>
</thead>
</table>

D. The requested measure submission information is complete. Generally, measures should be fully developed and tested so that all the evaluation criteria have been addressed and information needed to evaluate the measure is provided. Measures that have not been tested are only potentially eligible for a time-limited endorsement and in that case, measure owners must verify that testing will be completed within 12 months of endorsement.

<table>
<thead>
<tr>
<th>Rating</th>
<th>D Y N</th>
</tr>
</thead>
</table>

D.1 Testing: Yes, fully developed and tested

D.2 Have NQF-endorsed measures been reviewed to identify if there are similar or related measures? Yes

(for NQF staff use) Have all conditions for consideration been met? Met

Staff Notes to Steward (if submission returned):

Staff Notes to Reviewers (issues or questions regarding any criteria):

Staff Reviewer Name(s):

1. IMPORTANCE TO MEASURE AND REPORT

Extend to which the specific measure focus is important to making significant gains in health care quality (safety, timeliness, effectiveness, efficiency, equity, patient-centeredness) and improving health outcomes for a specific high impact aspect of healthcare where there is variation in or overall poor performance. *Measures must be judged to be important to measure and report in order to be evaluated against the remaining criteria.*

<table>
<thead>
<tr>
<th>1a. High Impact</th>
<th>Eval Rating</th>
</tr>
</thead>
</table>

1a.1 Demonstrated High Impact Aspect of Healthcare: a leading cause of morbidity/mortality, patient/societal consequences of poor quality, frequently performed procedure, high resource use

1a.2

1a.3 Summary of Evidence of High Impact: Cardiac imaging is a mainstay in medical decision-making for patients with known or suspected heart disease. However, expenditures related to imaging comprise a significant portion of the health care budget. Much scrutiny has been focused on cardiovascular imaging with regard to the potential for overuse, especially in view of substantial geographic variation in ordering patterns and the limited amount of evidence-based data supporting the use of imaging as it relates to patient outcomes. Given the significant contribution of heart disease to morbidity and mortality and the prevalence of cardiovascular disease, it is important to determine the appropriate use of diagnostic tests such as stress echocardiography, stress SPECT MPI, CCTA and CMR.

1b. Opportunity for Improvement

1b.1 Benefits (improvements in quality) envisioned by use of this measure: Appropriate use criteria define “when to do” and “how often to do” a given procedure in the context of scientific evidence, the health care environment, the patient’s profile and a physician’s judgment. While practice guidelines...
provide a foundation for summarizing evidence-based cardiovascular care or for providing expert consensus opinions, in many areas, marked variability remains in the use of cardiovascular procedures, raising questions about over-use and under-use. Appropriate use criteria provide practical tools to measure this variability and to look at utilization patterns. The criteria are designed to examine the use of diagnostic and therapeutic procedures to support efficient use of medical resources, while also providing patients with quality, appropriate care.

A measure that reports rates of inappropriate imaging within practices would contain information regarding both cost and quality, because an inappropriate test results in both higher costs and poorer-quality care. Conversely, a reduction in this rate would simultaneously improve quality and decrease cost. Improvements in this metric should lead to consistent application of AUC and improve the efficiency of the system.

1b.2 Summary of data demonstrating performance gap (variation or overall poor performance) across providers:
A number of studies have indicated that cardiac imaging in post PCI patients within 2 years is a common inappropriate use.

1b.3 Citations for data on performance gap:

1b.4 Summary of Data on disparities by population group:
None

1b.5 Citations for data on Disparities:
None

1c.1 Outcome or Evidence to Support Measure Focus

1c.1.1 Relationship to Outcomes (For non-outcome measures, briefly describe the relationship to desired outcome. For outcomes, describe why it is relevant to the target population): Diagnostic testing, such as stress SPECT MPI, stress echocardiography, CCTA and CMR, is used to detect disease and provide risk assessment used to modify treatment strategies and approaches. Information provided by such testing can initiate, modify and stop further treatments for coronary heart disease (medications and revascularization) which have an impact on patient outcomes. In addition, false positives and false negatives can adversely impact the patient and their treatment outcomes. Lastly, radiation from stress SPECT MPI and CCTA poses a minimal but still important consideration for patient safety. Ensuring proper patient selection can avoid using resources in patients not expected to benefit from the testings and for which the associated risks

Comment [k4]: 1c. The measure focus is:
• an outcome (e.g., morbidity, mortality, function, health-related quality of life) that is relevant to, or associated with, a national health goal/priority, the condition, population, and/or care being addressed;
OR
• if an intermediate outcome, process, structure, etc., there is evidence that supports the specific measure focus as follows:
 • intermediate outcome - evidence that the measured intermediate outcome (e.g., blood pressure, HbA1c) leads to improved health/avoidance of harm or cost/benefit.
 • Process - evidence that the measured clinical or administrative process leads to improved health/avoidance of harm and if the measure focus is on one step in a multi-step care process, it measures the step that has the greatest effect on improving the specified desired outcome(s).
 • Structure - evidence that the measured structure supports the consistent delivery of effective processes or access that lead to improved health/avoidance of harm or cost/benefit.
 • Patient experience - evidence that an association exists between access to a health service and the outcomes, values and preferences of individuals/ the public.
 • Access - evidence that an association exists between access to a health service and the outcomes of, or experience with, care.
 • Efficiency - demonstration of an association between the measured resource use and level of performance with respect to one or more of the other five IOM aims of quality.

Comment [k5]: 4 Clinical care processes typically include multiple steps: assess → choose/plan intervention (with patient input) → provide intervention → evaluate impact on health status. If the measure focus is one step in such a multi-step process, the step with the greatest effect on the desired outcome should be selected as the focus of measurement. For example, although assessment of immunization status and recommending immunization are necessary steps, they are not sufficient to achieve the desired impact on health status - patients must be vaccinated to achieve immunity. This does not preclude consideration of measures of preventive screening interventions where there is a strong link with desired outcomes (e.g., mammography) or measures for multiple care processes that affect a single outcome.
would be unnecessary.

1c.2-3. Type of Evidence: evidence based guideline, expert opinion

1c.4 Summary of Evidence (as described in the criteria; for outcomes, summarize any evidence that healthcare services/care processes influence the outcome):

Appropriate use criteria define “when to do” and “how often to do” a given procedure in the context of scientific evidence, the health care environment, the patient’s profile and a physician’s judgment. While practice guidelines provide a foundation for summarizing evidence-based cardiovascular care or for providing expert consensus opinions, in many areas, marked variability remains in the use of cardiovascular procedures, raising questions about over-use and under-use. Appropriate use criteria provide practical tools to measure this variability and to look at utilization patterns. The criteria are designed to examine the use of diagnostic and therapeutic procedures to support efficient use of medical resources, while also providing patients with quality, appropriate care.

Because of its patient-centered approach, it is hoped that appropriate use criteria can lead to patient education regarding expected benefits and risks associated with diagnostic and therapeutic procedures. In addition, physicians, payers and medical facilities can use the criteria prospectively or retrospectively to assess practice patterns, design ordering protocols and/or provide the basis for quality improvement activities focused on ensuring the most appropriate care for patients.

Unlike many performance measures which have primarily focused on underuse of evidence based therapies, this measure set focuses on overuse of diagnostic technology for which there are a limited number of prospective, randomized trials. As such, typical guideline based approaches to selecting the measures such as focusing on Class I, Level of Evidence A recommendations is not feasible. However, appropriate use criteria were designed to highlight patient scenarios for which observational data and expert opinion would indicate the incremental benefit gained by use of a diagnostic test is not justified. The data supporting these common inappropriate indications is based on well known risk algorithms (with more than 30 years of use) and observational data describing retrospectively and prospectively how the criteria have performed in determining test yield characteristics. In both cases, the evidence indicates that the expected information gained from a diagnostic test would be minimal compared to other patient populations. As such, the expected mortality benefit and treatment impact that such diagnostic testing would have based on current treatment guidelines would be minimal, as well. Table 1 highlights the yield of testing in a recent prospective study applying the SPECT MPI Appropriate Use Criteria. While the overall test yield was low in this study, a test with no or small amounts of Ischemia in certain populations can be very meaningful and impact on the decision of whether to avoid more aggressive medical or interventional therapies. However, in the patient populations highlighted by this measure set, it would be difficult to justify the value of a negative test as these patients already would be unlikely to be candidates for therapy. Furthermore, a positive test, as can be seen below, is very unlikely and is an even more infrequent occurrence than in other patient scenarios.

Table 1. Test Results (All Sites, All Dates); N= 6333

<table>
<thead>
<tr>
<th>Category</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Inappropriate</td>
<td></td>
</tr>
<tr>
<td>(low risk – Asx; routine post PCI; periop eval for low risk surgery)</td>
<td></td>
</tr>
<tr>
<td>Moderate Ischemia</td>
<td>0.6% of all patients in pilot N=38</td>
</tr>
<tr>
<td>Severe Ischemia</td>
<td>0.1% of all patients in pilot N=7</td>
</tr>
<tr>
<td>Moderate or Severe Ischemia</td>
<td>0.7% of all patients in pilot N=45</td>
</tr>
</tbody>
</table>
All other patients in pilot
Moderate Ischemia
6.1% of all patients in pilot \(N=384 \)

Severe Ischemia
1.0% of all patients in pilot \(N=62 \)

Moderate or Severe Ischemia
7.1% of all patients in pilot \(N=446 \)

Note: No perioperative low risk surgery patients had moderate to severe ischemia

1c.5 Rating of strength/quality of evidence (also provide narrative description of the rating and by whom):
Observational Studies and Expert Opinion - ACCF AUC Criteria Task Force

1c.6 Method for rating evidence: Specific evidence grades are not assigned by Appropriate Use Criteria (AUC), but generally diagnostic imaging evidence is based on observational studies, including well known risk models such as Framingham and Diamond and Forrester. In addition, a RAND modified Delphi process is used to determine the AUC rating that combines expert opinion with available evidence and specific patient information. Few studies are conducted to demonstrate a lack of benefit and thus, clinical risk and expert opinion is required to develop the AUC.

1c.7 Summary of Controversy/Contradictory Evidence: Evidence for or against cardiac stress imaging in patients post PCI within 2 years when patients are asymptomatic is limited. The ideal frequency of follow-up is not known. Follow-up for incomplete revascularization and other complications is expected, but not excluded from this measure. As such, the correct rate for this measure is not 0%. This measure is designed to discourage annual follow-up testing.

1c.8 Citations for Evidence (other than guidelines): None

1c.9 Quote the Specific guideline recommendation (including guideline number and/or page number):
Neither exercise testing nor radionuclide imaging is indicated for the routine, periodic monitoring of asymptomatic patients after PCI without specific indications.

AUC Indications
2008 Appropriateness Criteria for Stress Echoardiography
Indication 39: Risk Assessment: Post-Revascularization (PCI or CABG): Asymptomatic: Asymptomatic (e.g. silent ischemia) prior to previous revascularization AND less than 2 years after PCI - Inappropriate (3)

Indication 40: Risk Assessment: Post-Revascularization (PCI or CABG): Asymptomatic: Symptomatic prior to previous revascularization AND less than 2 years after PCI - Inappropriate (2)

2009 Appropriate Use Criteria for Cardiac Radionuclide Imaging
Indication 59: Risk Assessment: Post Revascularization (PCI or CABG): Asymptomatic: Less than 2 years after PCI - Inappropriate (3)

2006 Appropriateness Criteria for CCT and CMR
Indication 27: Detection of CAD: Post-Revascularization (PCI or CABG) (Use of CCTA): Evaluation for in-stent restenosis and coronary anatomy after PCI - Inappropriate (2)

Comment [k6]: The strength of the body of evidence for the specific measure focus should be systematically assessed and rated (e.g., USPSTF grading system http://www.ahrq.gov/clinic/uspstf07/methods/benefit.htm). If the USPSTF grading system was not used, the grading system is explained including how it relates to the USPSTF grades or why it does not. However, evidence is not limited to quantitative studies and the best type of evidence depends upon the question being studied (e.g., randomized controlled trials appropriate for studying drug efficacy are not well suited for complex system changes). When qualitative studies are used, appropriate qualitative research criteria are used to judge the strength of the evidence.
1c.10 Clinical Practice Guideline Citation:

1c.11 National Guideline Clearinghouse or other URL:

http://www.acc.org/qualityandscience/clinical/statements.htm

1c.12 Rating of strength of recommendation (also provide narrative description of the rating and by whom):

Inappropriate - test is not generally acceptable and is not a reasonable approach for the indication

1c.13 Method for rating strength of recommendation (if different from USPSTF system, also describe rating and how it relates to USPSTF):

Guidelines - consensus development

1c.14 Rationale for using this guideline over others:

Appropriate Use Criteria developed by ACC in partnership with other societies provide more specific patient scenarios and directly address inappropriate use while other guidelines and appropriateness criteria documents do not offer this specificity nor do they generally address overuse/waste.

TAP/Workgroup: What are the strengths and weaknesses in relation to the sub-criteria for Importance to Measure and Report?

1

Steering Committee: Was the threshold criterion, Importance to Measure and Report, met?

Rationale:

1

2. SCIENTIFIC ACCEPTABILITY OF MEASURE PROPERTIES

Extent to which the measure, as specified, produces consistent (reliable) and credible (valid) results about the quality of care when implemented. (evaluation criteria)

2a. MEASURE SPECIFICATIONS

S.1 Do you have a web page where current detailed measure specifications can be obtained?

S.2 If yes, provide web page URL:

2a. Precisely Specified

2a.1 Numerator Statement (Brief, text description of the numerator - what is being measured about the target population, e.g. target condition, event, or outcome):

Number of stress SPECT MPI, stress echo, CCTA and CMR performed in asymptomatic patients within 2 years of the most recent PCI

2a.2 Numerator Time Window (The time period in which cases are eligible for inclusion in the numerator):

Sample of all SPECT MPI, stress echo, CCTA and CMR test orders during a calendar year using a single,
Numerator Details

All information required to collect/calculate the numerator, including all codes, logic, and definitions:

For all orders post PCI, determine all orders that were in asymptomatic patients:

Among asymptomatic patients, subtract date of most recent PCI from date of test requisition and categorize into orders less than two years since most recent PCI and orders placed greater than or equal to two years since most recent PCI.

Patients qualify for this measure if:
- Asymptomatic AND
- Less than two years since most recent PCI

NOTE: Data collection from patient requisition is required to adequately determine patient’s symptom status. Determination with only administrative data is not possible for these measures.

Denominator Statement

Brief, text description of the denominator - target population being measured:

Number of stress SPECT MPI, stress echo, CCTA and CMR performed.

Target population gender:

- Male
- Female

Target population age range:

- 18 years old and older - Appropriate Use Criteria only developed for adults

Denominator Time Window

The time period in which cases are eligible for inclusion in the denominator:

Sample of all stress SPECT MPI, stress echo, CCTA and CMR test orders during a calendar year using a single, consecutive 60 day time period.

Denominator Details

All information required to collect/calculate the denominator - the target population being measured - including all codes, logic, and definitions:

All consecutive stress SPECT MPI, stress echocardiography, CCTA and CMR orders.

Measurement Entity: Imaging laboratory prospectively measured on test requisition forms and/or patient charts.

Level of Measurement/Analysis: Imaging laboratory*

*Attribution for inappropriate use is shared between the ordering physician and imaging laboratory. In an ideal world, attribution to the ordering physician or institution, as well as the imaging laboratory, would be reflected in the reporting of these measures. However, there are numerous complexities that prevent assignment of these measures to individual ordering physicians. For example, ordering volumes from individual physicians and institutions are insufficient to make meaningful comparisons to allow such attribution. Thus, these measures will be reported at the level of the imaging laboratory. However, the extent to which the institution housing the imaging laboratory can impact these measures will be dependent upon cooperation of ordering physicians with the imaging laboratory.

Denominator Exclusions

Brief text description of exclusions from the target population:

Denominator Exclusion Details

All information required to collect exclusions to the denominator, including all codes, logic, and definitions:

Stratification Details/Variables

All information required to stratify the measure including the stratification variables, all codes, logic, and definitions:

None

Risk Adjustment Type

No risk adjustment necessary

Comment [k9]: 11 Risk factors that influence outcomes should not be specified as exclusions.

12 Patient preference is not a clinical exception to eligibility and can be influenced by provider interventions.
2a.14 Risk Adjustment Methodology/Variables (List risk adjustment variables and describe conceptual models, statistical models, or other aspects of model or method):
None

2a.15-17 Detailed risk model available Web page URL or attachment:

2a.18-19 Type of Score: rate/proportion
2a.20 Interpretation of Score: better quality = lower score
2a.21 Calculation Algorithm (Describe the calculation of the measure as a flowchart or series of steps):
Locate all stress SPECT MPI, stress echocardiography, CCTA and CMR orders performed during the sampling period.

Record the total number of tests during the sampling period as the denominator.

From this sets of test orders, identify orders containing the criteria listed in the numerator.

2a.22 Describe the method for discriminating performance (e.g., significance testing):
No laboratory is expected to achieve 0% inappropriate orders as there always will be extenuating circumstances not captured by the appropriate use criteria. However, it is expected that significance testing can be applied to differentiate performance between laboratories and for a given laboratory over time.

2a.23 Sampling (Survey) Methodology If measure is based on a sample (or survey), provide instructions for obtaining the sample, conducting the survey and guidance on minimum sample size (response rate):
Measures are to be developed based on a sample of a full calendar year based on the following sampling methodology:

Select a starting month:
- January
- March
- May
- July
- September
- November

Begin 60 day data collection period on the 1st on the month for the selected starting month.

Determine whether at least 30 stress SPECT, stress echo, CCTA and CMR orders have been placed during the selected time period. If not, select another time period with a minimum number of 30 cases. If no time period includes the minimum number of cases, then the imaging laboratory does not have sufficient volume to report this measure.

Sampling is required for this measure as full year data collection does not alter performance rates for this measure and would place an additional data collection burden on laboratories. It also allows laboratories to share performance with ordering physicians more quickly than would be possible under full year calendar reporting.

2a.24 Data Source (Check the source(s) for which the measure is specified and tested)
paper medical record/flowsheet, Survey: Provider

2a.25 Data source/data collection instrument (identify the specific data source/data collection instrument, e.g. name of database, clinical registry, collection instrument, etc.):
Optimization of Patient Selection for Cardiac Imaging

2a.26-28 Data source/data collection instrument reference web page URL or attachment: Attachment
Optimization of Patient Selection for Cardiac Imaging-6340456125497968.doc

2a.29-31 Data dictionary/code table web page URL or attachment: Attachment
Imaging Efficiency Measures Micro-specifications 121809-633976931205474710.doc
Level of Measurement/Analysis

Facility/Agency

2a.32-35 Level of Measurement/Analysis *(Check the level(s) for which the measure is specified and tested)*

2a.36-37 Care Settings *(Check the setting(s) for which the measure is specified and tested)*

2a.38-41 Clinical Services *(Healthcare services being measured, check all that apply)*

Testing/Analysis

2b. Reliability testing

2b.1 Data/sample (description of data/sample and size): No direct reliability testing of these measures has been undertaken. However, reliability testing has been performed on individual patient populations as a part of studies related to implementation of appropriate use criteria. In addition, a number of studies have demonstrated remarkable consistency in their findings related to the proportion of inappropriate studies and the relative frequency of common inappropriate indications.

2b.2 Analytic Method (type of reliability & rationale, method for testing):

Agreement between 2 nurse abstractors - kappa test

Assignment of patients to appropriate use criteria requires the same data elements used to calculate this measure set. In fact, complete assignment of all patients and not just inappropriate patients requires a greater number of data variables for agreement between abstracters. It is anticipated that the more limited data set required for this measure set would yield even higher kappa values.

2b.3 Testing Results (reliability statistics, assessment of adequacy in the context of norms for the test conducted):

Nurse abstracter agreement kappa = .60 for indications other than repeat testing

Nurse abstracter agreement kappa=0.72 for stress echocardiography

2c. Validity testing

2c.1 Data/sample (description of data/sample and size): 6,333 patients who underwent stress SPECT MPI testing as a part of the ACCF/UHC pilot

2c.2 Analytic Method (type of validity & rationale, method for testing):

Comparison of test yield as determined by extent of ischemia (moderate to severe ischemia - which would indicate a test finding that could potentially impact treatment) in the overall testing population:

Patients Classified in the Top Inappropriate Indications

Versus

Patients not Classified in the Top Inappropriate Indications (Other)

2c.3 Testing Results (statistical results, assessment of adequacy in the context of norms for the test conducted):

Comment [KP10]: 2b. Reliability testing demonstrates the measure results are repeatable, producing the same results a high proportion of the time when assessed in the same population in the same time period.

Comment [k11]: 8 Examples of reliability testing include, but are not limited to: inter-rater/abstractor or intra-rater/abstractor studies; internal consistency for multi-item scales; test-retest for survey items. Reliability testing may address the data items or final measure score.

Comment [KP12]: 2c. Validity testing demonstrates that the measure reflects the quality of care provided, adequately distinguishing good and poor quality. If face validity is the only validity addressed, it is systematically assessed.

Comment [k13]: 9 Examples of validity testing include, but are not limited to: determining if measure scores adequately distinguish between providers known to have good or poor quality assessed by another valid method; correlation of measure scores with another valid indicator of quality for the specific topic; ability of measure scores to predict scores on some other related valid measure; content validity for multi-item scales/tests. Face validity is a subjective assessment by experts of whether the measure reflects the quality of care (e.g., whether the proportion of patients with BP < 140/90 is a marker of quality). If face validity is the only validity addressed, it is systematically assessed (e.g., ratings by relevant stakeholders) and the measure is judged to represent quality care for the specific topic and that the measure focus is the most important aspect of quality for the specific topic.
Test Results (All Sites, All Dates); N= 6333

Top Inappropriate
(low risk - Asx; routine post PCI; periop eval for low risk surgery)

- **Moderate Ischemia**
 - 0.6% of all patients in pilot N=38
- **Severe Ischemia**
 - 0.1% of all patients in pilot N=7
- **Moderate or Severe Ischemia**
 - 0.7% of all patients in pilot N=45

All other patients in pilot

- **Moderate Ischemia**
 - 6.1% of all patients in pilot N=384
- **Severe Ischemia**
 - 1.0% of all patients in pilot N=62
- **Moderate or Severe Ischemia**
 - 7.1% of all patients in pilot N=446

Note: No perioperative low risk surgery patients had moderate to severe ischemia

2d. Exclusions Justified

2d.1 Summary of Evidence supporting exclusion(s):
A lack of data on patient selection criteria makes it impossible to determine whether a patient should have been counted as a part of numerator and thus, these patients also are not counted as a part of the denominator to ensure that these test orders do not dilute the patient population measured.

2d.2 Citations for Evidence:
None.

2d.3 Data/sample (description of data/sample and size):
None.

2d.4 Analytic Method (type analysis & rationale):
None

2d.5 Testing Results (e.g., frequency, variability, sensitivity analyses):
None

2e. Risk Adjustment for Outcomes/ Resource Use Measures

2e.1 Data/sample (description of data/sample and size):
No risk adjustment

2e.2 Analytic Method (type of risk adjustment, analysis, & rationale):
No risk adjustment

2e.3 Testing Results (risk model performance metrics):
No risk adjustment

2e.4 If outcome or resource use measure is not risk adjusted, provide rationale:
No risk adjustment

Comment [KP14]: 2d. Clinically necessary measure exclusions are identified and must be:
- • supported by evidence of sufficient frequency of occurrence so that results are distorted without the exclusion;
- AND
- • a clinically appropriate exception (e.g., contraindication) to eligibility for the measure focus;
- AND
- • precisely defined and specified:
 - • if there is substantial variability in exclusions across providers, the measure is specified so that exclusions are computable and the effect on the measure is transparent (i.e., impact clearly delineated, such as number of cases excluded, exclusion rates by type of exclusion);
 - if patient preference (e.g., informed decision-making) is a basis for exclusion, there must be evidence that it strongly impacts performance on the measure and the measure must be specified so that the information about patient preference and the effect on the measure is transparent (e.g., numerator category computed separately, denominator exclusion category computed separately).

Comment [K15]: 10 Examples of evidence that an exclusion distorts measure results include, but are not limited to: frequency of occurrence, sensitivity analyses with and without the exclusion, and variability of exclusions across providers.

Comment [KP16]: 2e. For outcome measures and other measures (e.g., resource use) when indicated:
- • an evidence-based risk-adjustment strategy (e.g., risk models, risk stratification) is specified and is based on patient clinical factors that influence the measured outcome (but not disparities in care) and are present at start of care;
 - OR
 - rationale/data support no risk adjustment.

Comment [K17]: 13 Risk models should not obscure disparities in care for populations by including factors that are associated with differences/inequalities in care such as race, socioeconomic status, gender (e.g., poorer treatment outcomes of African American men with prostate cancer, inequalities in treatment for CVD risk factors between men and women). It is preferable to stratify measures by race and socioeconomic status rather than adjusting out differences.
2f. Identification of Meaningful Differences in Performance

2f.1 Data/sample from Testing or Current Use (description of data/sample and size): 997 patients enrolled in ACC/UHC SPECT MPI AUC Pilot - 4 sites; patients enrolled in March and April (Internal ACC data analysis of Hendel, RC; Cerqueira, M; Douglas, PS et al. “A Multicenter Assessment of the Use of Single-Photon Emission Computed Tomography Myocardial Perfusion Imaging With Appropriateness Criteria”. J Am Coll Cardiol. Published online December 10, 2009.)

2f.2 Methods to identify statistically significant and practically/meaningfully differences in performance (type of analysis & rationale):
- Data from all sites showed that this indication was among their most frequent inappropriate indications. The difference between the best and worst performers was more than threefold.

2f.3 Provide Measure Scores from Testing or Current Use (description of scores, e.g., distribution by quartile, mean, median, SD, etc.; identification of statistically significant and meaningfully differences in performance):
- Site 1 2.5%
- Site 2 4.8%
- Site 3 2.8%
- Site 4 0.9%

2g. Comparability of Multiple Data Sources/Methods

2g.1 Data/sample (description of data/sample and size): None

2g.2 Analytic Method (type of analysis & rationale): None

2g.3 Testing Results (e.g., correlation statistics, comparison of rankings):
- It is anticipated that prospective data collection of some of these elements will be required using a physician/clinician survey as retrospective location of some data elements may be limited. However, paper records should have some information and may be used to support the survey.

2h. Disparities in Care

2h.1 If measure is stratified, provide stratified results (scores by stratified categories/cohorts): N/A

2h.2 If disparities have been reported/identified, but measure is not specified to detect disparities, provide follow-up plans: N/A

TAP/Workgroup: What are the strengths and weaknesses in relation to the sub-criteria for Scientific Acceptability of Measure Properties?

Steering Committee: Overall, to what extent was the criterion, Scientific Acceptability of Measure Properties, met?

Rationale:

3. USABILITY

Extent to which intended audiences (e.g., consumers, purchasers, providers, policy makers) can understand the results of the measure and are likely to find them useful for decision making. (evaluation criteria):

3a. Meaningful, Understandable, and Useful Information

3a.1 Current Use: testing not yet completed

3a.2 Use in a public reporting initiative (disclosure of performance results to the public at large) (if applicable):
<table>
<thead>
<tr>
<th>Rating: C=Completely; P=Partially; M=Minimally; N=Not at all; NA=Not applicable</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3b/3c. Relation to other NQF-endorsed measures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for NQF staff use</td>
</tr>
<tr>
<td>3b. Harmonization</td>
<td></td>
</tr>
<tr>
<td>If this measure is related to measure(s) already endorsed by NQF (e.g., same topic, but different target population/setting/data source or different topic but same target population):</td>
<td></td>
</tr>
<tr>
<td>3b.2 Are the measure specifications harmonized? If not, why?</td>
<td></td>
</tr>
<tr>
<td>3c. Distinctive or Additive Value</td>
<td></td>
</tr>
<tr>
<td>3c.1 Describe the distinctive, improved, or additive value this measure provides to existing NQF-endorsed measures:</td>
<td></td>
</tr>
<tr>
<td>5.1 Competing Measures</td>
<td></td>
</tr>
<tr>
<td>If this measure is similar to measure(s) already endorsed by NQF (i.e., on the same topic and the same target population), describe why it is a more valid or efficient way to measure quality:</td>
<td></td>
</tr>
<tr>
<td>TAP/Workgroup: What are the strengths and weaknesses in relation to the sub-criteria for Usability?</td>
<td></td>
</tr>
<tr>
<td>Steering Committee: Overall, to what extent was the criterion, Usability, met?</td>
<td></td>
</tr>
<tr>
<td>Rationale:</td>
<td></td>
</tr>
</tbody>
</table>

Comment [KP23]: 3b. The measure specifications are harmonized with other measures, and are applicable to multiple levels and settings.

Comment [K24]: 16 Measure harmonization refers to the standardization of specifications for similar measures on the same topic (e.g., influenza immunization of patients in hospitals or nursing homes), or related measures for the same target population (e.g., eye exam and Hba1c for patients with diabetes), or definitions applicable to many measures (e.g., age designation for children) so that they are uniform or compatible, unless differences are dictated by the evidence. The dimensions of harmonization can include numerator, denominator, exclusions, and data source and collection instructions. The extent of harmonization depends on the relationship of the measures, the evidence for the specific measure focus, and differences in data sources.

Comment [KP25]: 3c. Review of existing endorsed measures and measure sets demonstrates that the measure provides a distinctive or additive value to existing NQF-endorsed measures (e.g., provides a more complete picture of quality for a particular condition or aspect of healthcare).

Comment [K26]: 5. Demonstration that the measure is superior to competing measures - new submissions and/or endorsed measures (e.g., is a more valid or efficient way to measure).
4. FEASIBILITY

Extent to which the required data are readily available, retrievable without undue burden, and can be implemented for performance measurement. *(evaluation criteria)*

<table>
<thead>
<tr>
<th></th>
<th>Eval Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a. Data Generated as a Byproduct of Care Processes</td>
<td>4a</td>
</tr>
<tr>
<td>4a.1-2 How are the data elements that are needed to compute measure scores generated?</td>
<td>C, P, M, N</td>
</tr>
<tr>
<td>Data generated as byproduct of care processes during delivery. Survey, coding/abstraction performed by someone other than person obtaining original information,</td>
<td>4a</td>
</tr>
<tr>
<td>4b. Electronic Sources</td>
<td>4b</td>
</tr>
<tr>
<td>4b.1 Are all the data elements available electronically?</td>
<td>C, P, M, N</td>
</tr>
<tr>
<td>(elements that are needed to compute measure scores are in defined, computer-readable fields, e.g., electronic health record, electronic claims)</td>
<td>No</td>
</tr>
<tr>
<td>4b.2 If not, specify the near-term path to achieve electronic capture by most providers.</td>
<td>C, P, M, N</td>
</tr>
<tr>
<td>Some data elements should already be a part of the electronic record (PCI history, scheduled surgery). In addition, e-ordering for diagnostic testing has been proposed for meaningful use, encouraging integration of these types of data elements. In addition, ACC is developing clinical decision support tools that can be embedded in electronic health records to capture the necessary information.</td>
<td>4b</td>
</tr>
<tr>
<td>4c. Exclusions</td>
<td>4c</td>
</tr>
<tr>
<td>4c.1 Do the specified exclusions require additional data sources beyond what is required for the numerator and denominator specifications?</td>
<td>C, P, M, N</td>
</tr>
<tr>
<td>No</td>
<td>4c</td>
</tr>
<tr>
<td>4c.2 If yes, provide justification.</td>
<td>C, P, M, N</td>
</tr>
<tr>
<td>No</td>
<td>4c</td>
</tr>
<tr>
<td>4d. Susceptibility to Inaccuracies, Errors, or Unintended Consequences</td>
<td>4d</td>
</tr>
<tr>
<td>4d.1 Identify susceptibility to inaccuracies, errors, or unintended consequences of the measure and describe how these potential problems could be audited. If audited, provide results.</td>
<td>C, P, M, N</td>
</tr>
<tr>
<td>None</td>
<td>4d</td>
</tr>
<tr>
<td>4e. Data Collection Strategy/Implementation</td>
<td>4e</td>
</tr>
<tr>
<td>4e.1 Describe what you have learned/modified as a result of testing and/or operational use of the measure regarding data collection, availability of data/missing data, timing/frequency of data collection, patient confidentiality, time/cost of data collection, other feasibility/implementation issues:</td>
<td>C, P, M, N</td>
</tr>
<tr>
<td>Hendel, RC; Cerqueira, M; Douglas, PS et al. “A Multicenter Assessment of the Use of Single-Photon Emission Computed Tomography Myocardial Perfusion Imaging With Appropriateness Criteria”. J Am Coll Cardiol. Published online December 10, 2009. This study demonstrated the feasibility of data collection as well as the most frequent inappropriate indications. This allowed ACC to narrow the number of indications measured for this measure set along with the associated data elements.</td>
<td>4e</td>
</tr>
<tr>
<td>4e.2 Costs to implement the measure (costs of data collection, fees associated with proprietary measures):</td>
<td>C, P, M, N</td>
</tr>
<tr>
<td>No data available, although the data elements required should be collected as a part of patient intake for testing.</td>
<td>4e</td>
</tr>
<tr>
<td>4e.3 Evidence for costs:</td>
<td>C, P, M, N</td>
</tr>
</tbody>
</table>

Comment [KP27]: 4a. For clinical measures, required data elements are routinely generated concurrent with and as a byproduct of care processes during care delivery. (e.g., BP recorded in the electronic record, not abstracted from the record later by other personnel; patient self-assessment tools, e.g., depression scale; lab values, meds, etc.)

Comment [KP28]: 4b. The required data elements are available in electronic sources. If the required data are not in existing electronic sources, a credible, near-term path to electronic collection by most providers is specified and clinical data elements are specified for transition to the electronic health record.

Comment [KP29]: 4c. Exclusions should not require additional data sources beyond what is required for scoring the measure (e.g., numerator and denominator) unless justified as supporting measure validity.

Comment [KP30]: 4d. Susceptibility to inaccuracies, errors, or unintended consequences and the ability to audit the data items to detect such problems are identified.

Comment [KP31]: 4e. Demonstration that the data collection strategy (e.g., source, timing, frequency, sampling, patient confidentiality, etc.) can be implemented (e.g., already in operational use, or testing demonstrates that it is ready to put into operational use).
4e.4 Business case documentation:
Given the expense of cardiovascular imaging, potential reductions in inappropriate test ordering should yield significant cost savings to the healthcare system.

TAP/Workgroup: What are the strengths and weaknesses in relation to the sub-criteria for **Feasibility**?

<table>
<thead>
<tr>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Steering Committee: Overall, to what extent was the criterion, **Feasibility**, met?

<table>
<thead>
<tr>
<th>C</th>
<th>P</th>
<th>M</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rationale:

RECOMMENDATION

(for NQF staff use) Check if measure is untested and only eligible for time-limited endorsement.

<table>
<thead>
<tr>
<th>Time-limited</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Steering Committee: Do you recommend for endorsement?

<table>
<thead>
<tr>
<th>Y</th>
<th>N</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

CONTACT INFORMATION

Co.1 **Measure Steward (Intellectual Property Owner)**

Organization
American College of Cardiology Foundation | 2400 N St. NW | Washington | District Of Columbia | 20037

Co.2 **Point of Contact**
Joseph | Allen, MA | jallen@acc.org | 202-375-6463

Co.3 **Measure Developer if different from Measure Steward**

Organization
American College of Cardiology Foundation | 2400 N St. NW | Washington | District Of Columbia | 20037

Co.4 **Point of Contact**
Joseph | Allen, MA | jallen@acc.org | 202-375-6463

Co.5 **Submitter if different from Measure Steward POC**

Joseph | Allen, MA | jallen@acc.org | 202-375-6463 | American College of Cardiology Foundation

Co.6 **Additional organizations that sponsored/participated in measure development**

ADDITIONAL INFORMATION

Workgroup/Expert Panel involved in measure development

Ad.1 Provide a list of sponsoring organizations and workgroup/panel members’ names and organizations. Describe the members’ role in measure development.

All individuals are volunteer members representing American College of Cardiology Foundation:

Pamela Douglas, MD, MACC
Joseph Allen, MA
Robert Hendel, MD, FACC
Joseph Cacchione, MD, FACC
Manuel Cerqueira, MD, FACC
Joseph Drozda, MD, FACC
Michael Picard, MD, FACC
Martha Radford, MD, FACC
Leslee Shaw, PhD, FACC
Allen Taylor, MD, FACC

Group developed list of proposed measures, specifications, definitions, justification, etc.
Ad.2 If adapted, provide name of original measure:	
Ad.3-5 If adapted, provide original specifications URL or attachment	
Measure Developer/Steward Updates and Ongoing Maintenance	
Ad.6 Year the measure was first released:	2009
Ad.7 Month and Year of most recent revision:	2009-12
Ad.8 What is your frequency for review/update of this measure?	Annual
Ad.9 When is the next scheduled review/update for this measure?	2010-12
Ad.10 Copyright statement/disclaimers:	Copyright 2009. American College of Cardiology Foundation
Ad.11 -13 Additional Information web page URL or attachment:	
Date of Submission (MM/DD/YY):	05/14/2010
Measure #/Title/Steward

#IEP-015-10/ Cardiac stress imaging not meeting appropriate use criteria: Routine testing after percutaneous coronary intervention (PCI)/ ACC

Description
Percentage of all stress SPECT MPI and stress echo performed routinely after PCI, with reference to timing of test after PCI and symptom status.

Initial In-person Vote
Recommend for endorsement with conditions – 14
Not recommend for endorsement - 3

<table>
<thead>
<tr>
<th>Steering Committee Questions/Conditions for Measure Developer:</th>
<th>Abbreviated Response from Measure Developer:</th>
</tr>
</thead>
</table>
| • Potentially eligible for time-limited endorsement, would need to affirm a 12 month testing strategy | • ACC holds that sufficient testing demonstrating the reliability and validity of the measure have been conducted.
 ▪ ACC requests further clarification on what additional data or findings are necessary to meet this request |
| • Expand to include MRI and CTA or provide justification why MRI and CTA were not part of or needed in the initial measure | • ACC is willing to the meet condition, but noted the addition will only capture a small portion of imaging modalities for this population |
| • Remove the denominator exclusion criteria, “patients without sufficient patient selection criteria recorded” | • ACC is willing to meet condition, but noted the change may inflate the denominator and have potential unintended consequences |
| • Expand the denominator population to include CABG | • Does not support. ACC elected to not meet this condition, rational – not appropriate |
| • Consider changing the title of the measure, removing potentially negative connotations | • Does not support. ACC elected not to meet this condition, rational – not warranted |

Detailed Response from Measure Developer:

- ACC has data available from a recently completed pilot project to demonstrate the validity and reliability of this measure. Given the extensive testing in the pilot project, ACC would argue that time limited endorsement and a further testing strategy is not needed. ACC needs further clarification about what additional testing must be completed. In addition, the ACC has a current quality improvement project with an online data collection tool for national measurement.

- ACC is willing to add MRI and CTA to the measure. However, ACC does not anticipate a large number of cases to be documented for these imaging modalities for follow-up in this patient population. CTA is limited technically in stents of small diameter currently, and MRI is not widely used in this patient population.

- ACC is willing to remove the denominator exclusion criteria, “patients without sufficient patient selection criteria recorded.” However, this change will inflate the denominator of the measure for imaging laboratories that are unable to locate the information necessary to determine all components of the numerator. As such, the removal could create an incentive not to obtain enough data to clearly indicate a patient qualifies for this measure.
• ACC has decided not to include CABG in the numerator of the measure. The denominator is all stress imaging so it is not appropriate for the denominator. CABG has different timeframes for follow-up testing, generally is done in more complex patients, and may be reasonable in some patients. By focusing on post PCI, the measure maintains a focus on a patient indication that did not meet appropriate use criteria.

• ACC does not think a change of the title to be less negative is warranted. The College revised its initial draft measure title of “Inappropriate cardiac stress imaging” to the current title in an attempt to make the title more neutral. The measure is designed to examine imaging that is not reasonable. Development of a more positive title would not reflect the focus of this measure which is overuse.