Linking quality and cost indicators to measure efficiency in health care (Version 4)

A paper commissioned by the National Quality Forum

Andrew M. Ryan, Ph.D.

Christopher P. Tompkins, Ph.D.

August 26, 2014

1 Acknowledgements

- 2 The authors would like to acknowledge the staff at the National Quality Forum, particularly
- 3 Ashlie Wilbon, Taroon Amin, and Erin O'Rourke, for their contributions and assistance with this
- 4 project. We would also like to acknowledge the outstanding contributions of the expert panel,
- 5 particularly Joyce Dubow and Carole Flamm, the panel co-chairs. We would also like to
- 6 acknowledge the research assistance of Jayme Mendelsohn.

Contents

Purpose of the commissioned paper	iii
Key definitions	V
Section 1. Why combining quality and cost measures to measure efficiency in health	1
care matters	
Section 2. Options for combining quality and cost measures	4
Section 3. Illustration of models to combine indicators of cost and quality	9
Section 4. Summary of findings from environmental scan	15
Section 5. Combining indicators of quality and cost for different use cases	19
Section 6. Implications for the National Quality Forum	24
Exhibits	31
Appendix A: Applications outside of health care that combine indicators of quality and cost	49
References	53

1 Purpose of the commissioned paper

2	The National Quality Forum (NQF) has commissioned a paper to assess alternative
3	approaches to link – or combine – measures of quality and cost for the purpose of measuring
4	efficiency in health care. This paper reviews various approaches—both established and novel—
5	to measure efficiency. These include composite measures and approaches that keep the quality
6	and cost domains separate when assessing efficiency. The paper also considers the implications
7	of alternative methods for profiling and scoring providers based on their measured efficiency.
8	In addition to assessing the technical issues related to measuring and profiling efficiency, we
9	will consider the implications for using alternative approaches in the context of various
10	programs, such as the creation of tiered insurance networks and value-based payment.
11	Our goal in writing the commissioned paper is to help build consensus about the key
12	considerations and appropriateness of alternative approaches for combining quality and cost
13	measures into quantitative measures of efficiency. This paper will serve as a foundation to
14	inform the deliberations of a multi-stakeholder expert panel that will provide input on the
15	methodological challenges to linking cost and quality measures and the best practices for
16	combining cost and quality measures to assess efficiency of care. ¹
17	A substantial literature has also been devoted to understanding and measuring
18	efficiency in health care. ² While questions of efficiency in health care have been of interest for
19	decades, ^{3,4} this interest has accelerated in recent years. ⁵ However, as identified by a recent
20	systematic review commissioned by AHRQ, considerations of quality of care have been largely
21	absent from this literature. 5 Instead, researchers have evaluated economic efficiency using a

iii

variety of techniques to understand how a given output (e.g. a hospital day) can be optimized 1 2 for a given set of health care inputs (e.g. physician labor, nurse labor). While the study of economic efficiency in health care is of great importance, it is not the focus of this paper. 3 In this paper, we are interested in the assessment of efficiency only through the joint 4 5 consideration of cost and quality. We will not consider approaches to the measurement of 6 efficiency- such as brand prescribing rates or rates of MRI for patients with back pain - that seek to identify relative resource use and appropriateness.⁶ Measuring inappropriate resource 7 use, or "waste", clearly has value but represents an overly narrow interpretation of efficiency.⁶ 8 The use of health care services that are *never* clinically indicated are very limited and account 9 for a small amount of health care spending.⁷ For this reason, focusing simply on reducing 10 11 "wasteful" resource use is unlikely to substantially reduce health care spending, or increase efficiency. There is also a large literature concerned with the relationship between costs and 12 guality,⁸⁻¹² and a smaller literature on relationship between economic efficiency and guality.¹³ 13 While relevant to the concept of efficiency that we seek to understand, this literature is not 14 primarily concerned with profiling individual providers on the basis of efficiency. 15

1 Key Definitions

2	This project will reference a number of common terms that may have different connotations
3	for different audiences. Throughout this project, we will apply a modified version of the
4	definitions from the NQF's Patient-Focused Episodes of Care project: ¹⁴
5	Quality of care: the degree to which health services for individuals and populations
6	increase the likelihood of desired health and patient experience outcomes and are
7	consistent with professional knowledge ¹⁵
8	Cost of care: measures total health care spending, including total resource use and unit
9	price(s), by payor or consumer, for a health care service or group of health care services
10	associated with a specified patient population, time period, and unit(s) of clinical
11	accountability. Costs of care can be considered from different perspectives, including
12	the patient, the purchaser, the provider, or the societal perceptive. In this paper, we
13	consider costs primarily from the perspective of the payer (either the patient or the
14	purchaser) and consider only financial costs associated with care. Non-financial costs
15	are relevant when considering costs from the perspective of patients (e.g. opportunity
16	costs and travel costs associated with treatment), providers (e.g., administrative costs
17	from interacting with insurers ¹⁶), and society (e.g., the effects of health care costs on
18	the US economy ¹⁷). However, the challenges associated with collecting data on many of
19	these types of costs limits the inclusions of these costs in many applications to measure,
20	profile, and manage health care costs.

v

1	The financial costs of care, from the payer perspective, can also be operationalized in
2	several ways. For instance, costs could be defined either as charges for services billed by
3	providers or as "allowed charges," the payment amounts for services that are
4	negotiated between insurers and some providers. The assessment of health care costs
5	may also substitute average or "standardized prices" across the population of health
6	providers in order to remove price variation and allow for costs to be used as a measure
7	of resource use that is due solely to utilization patterns, rather than differential pricing.
8	The merit of these alternative conceptualizations of costs is likely to depend on the
9	application of cost and quality profiling – known as the use case – which we discuss in
10	Section 5 of this report.
11	Efficiency of care: measures the cost of care associated with a specified level of quality
12	of care. "Efficiency of care" is a measure of the relationship of the cost of care
13	associated with a specific level of performance measured with respect to dimensions of
14	quality.
15	Value of care: measures a specified stakeholder's (such as an individual patient's,
16	consumer organization's, payor's, provider's, government's, or society's) preference-
17	weighted assessment of a particular combination of quality and cost of care
18	performance. ⁱ

ⁱ Quality, cost, efficiency, and value can be measured and assessed for different aspects or segments of care (i.e., episodes of care ranging from management of a condition over time, to specific procedures or other acute events) and across different levels of organizational accountability (e.g. individual physicians, physician organizations, hospitals, insurance plans, or accountable care organizations). Decisions about the appropriate level of measurement and accountability will depend on the purpose – or "use case" – of combing quality and cost measures. See Section 5.

As used in this project, the terms efficiency and value correspond to the respective definitions 1 2 adopted previously by NQF and other stakeholders. Using these definitions, efficiency can be assessed objectively. By profiling providers' quality, cost, and efficiency, and showing the 3 component pieces, it is reasonable to assume that efficiency can be measured and displayed in 4 a way that allows stakeholders to consider "value" as a preference-weighted assessment of the 5 6 component pieces; i.e., quality, cost, and efficiency. For example, one approach might 7 determine a provider to be "high quality," while also "high cost," based on its performance in 8 relation to averages in both dimensions. An alternate approach is to insert an intermediate step of measuring efficiency. This might conclude that the provider is "high quality," but 9 actually "low cost" when measured only against providers with similarly high quality, and 10 therefore has high efficiency. Stakeholders can make value inferences in either case. The 11 intermediate step serves to clarify the process by making explicit the objective relationships 12 13 between quality and cost from which general and specific subjectively-weighted inferences are made regarding value. 14

1 Section 1. Why combining quality and cost measures to measure

2 efficiency in health care matters

3	Improving the efficiency of health care delivery in the United States is critical. Recent
4	attempts at payment reform, such as pay-for-performance and public quality reporting, have
5	failed to reduce cost growth. ^{18,19} By focusing primarily on quality measures of underuse – such
6	as non-adherence with evidence-based care – these programs have not provided direct
7	incentives for increased efficiency. Previous efforts to reign in cost growth through managed
8	care, such as capitated payment and utilization review, focused primarily on reducing costs
9	rather than improving quality of care. ²⁰
10	To address these shortcomings, the Patient Protection and Affordable Care Act created

numerous initiatives that are intended to improve the *efficiency* of US health care –not quality
 or cost alone. These initiatives include the Physician Value-Based Payment Modifier,²¹ Hospital
 Value-Based Purchasing,²² The Medicare Advantage Quality Bonus Program,²³ Accountable Care
 Organization programs,²⁴ and the End-Stage Renal Disease pay-for-performance program. More
 directly, legislation was introduced in 2009 to replace the standard update to physician
 payments with a geographically based "value index," which would adjust payments to
 physicians according to their relative quality and cost.²⁵

On the private side, a number of insurers have developed products with tiered networks that are based on measures of efficiency. These products are structured to increase patient cost-sharing for using providers that are designated in a lower-efficiency tier. The first generation of these programs established tiers based almost exclusively on costs.²⁶ However,

1	insurers have developed a range of increasingly sophisticated approaches to combine indicators
2	of cost and quality to categorize the efficiency of providers. These efforts are related to the rise
3	of high-deductible health plans and consumerism. Patients need both quality and cost
4	information in order to make informed choices about the services they need and the providers
5	they should use. In addition, given the price sensitivity to plans currently sold in insurance
6	exchanges created through the ACA, ²⁷ insures may adopt narrower networks in order to
7	compete on price. ²⁸ This will likely increase insurers' use of tiered networks based on measures
8	of provider value. Other promising private sector efforts, such as reference pricing, ²⁹ will likely
9	need to explicitly integrate provider quality measurement to gain greater acceptance.
10	These reforms require both quality and cost performance to be measured and assessed
11	together. These ongoing initiatives share a common set of goals: 1) To better identify high and
12	low efficiency providers and 2) To foster incentives for providers to improve efficiency. Broader
13	efforts to better identify the relative value of health care services are related, but rely on a
14	different set of tools and policy measures. While cost effectiveness and comparative
15	effectiveness research seeks to understand the relative cost and effectiveness of medical
16	treatments, efficiency profiling seeks to understand the relative efficiency of health care
17	providers.
18	However, the desire to use efficiency measures has outpaced scientific consensus about

how best to incorporate these measures into accountability efforts. As shown in section 2 of
this paper, this lack of consensus for combining cost and quality measures can be seen by the
disparate use of measures of efficiency across the public programs. Also, while many of the

private payer efforts to combine quality and cost have similar features, they differ in important
 ways.

3 Efforts are moving ahead to measure and profile health care providers' efficiency without a clear sense of the best approach to do so. The issues surrounding combining quality 4 5 and cost measures are certainly challenging: one recent report described the state of efficiency measurement as "woefully inadequate."³⁰ Two high profile efforts tasked with grappling with 6 these issues failed to recommend a strategy to do so.³¹ Now is the time to develop a framework 7 8 to identify the trade-offs between alternative approaches to combine quality and cost 9 indicators in order to guide the future development, evaluation, and use of efficiency 10 measurement in health care.

1 Section 2. Options for combining quality and cost measures

2 Methods for environmental scan

3	We performed an environmental scan to identify existing approaches that were
4	currently in use by Medicare, private payers, and other program sponsors that combine
5	indicators of quality and cost measures to assess efficiency. We also identified novel
6	approaches that link quality and cost indicators that are not currently in use by a program
7	sponsor but have been developed by researchers. To be included, an approach must assess cost
8	as an input and one or more measures of quality as the output.
9	We searched the PubMed databases for published articles in the English language that
10	appeared in journals between January 1990 and April 2014. Search terms included "quality",
11	"measuring," and "cost." We searched the bibliographies of retrieved articles looking for
12	additional relevant publications. We then searched Google Scholar, the Cochrane Database,
13	and conducted other general internet searches for the same search terms. This provided
14	resources that were not limited to peer-reviewed journals. We also identified applications
15	outside of health care that combine indicators of quality and cost (e.g. Consumer Reports "Best
16	and Worst Cars for the Money" and US News and World Reports "Best Value Schools"). See
17	Appendix A for information on these efforts.
18	Additionally, we solicited information from the NQF's Expert Panel on Linking Cost and
19	Quality. The materials referred to us by the expert panel frequently led to the discovery of
20	additional approaches. From the panel, we also obtained detailed information on approaches
21	that we knew had been initiated (for instance, in Medicare).

1	After identifying all of the programs that simultaneously assessed quality and cost, as
2	well as approaches proposed by researchers, we identified and described a set of mutually
3	exclusive approaches that combine quality and cost measures to measure efficiency. We then
4	described the basic features of these approaches. Next, we identified the programs that have
5	used quality and cost indicators to profile the efficiency of providers. This includes programs
6	that are currently running as well as those that are now defunct. For these programs, we
7	obtained information on several parameters: the name of the program, the services evaluated
8	(e.g. hospital only, physician only, all services), the level of attribution (e.g. hospital, physician
9	practice, individual physician), the specification of quality, the specification of cost, and the
10	approach used to combine quality and cost indicators.
11	Approaches used to combine quality and cost measures
12	We identified seven approaches that are currently in use or have been proposed by
13	researchers to combine quality and cost indicators to measure efficiency.
14	The conditional model: This approach, described by Timbie and Normand as the
15	"Univariate" approach ³² and by Tompkins et al. as the "Net-Incentive Payment Model" ³³
16	assesses efficiency as the conditional combination of quality and cost. The approach
17	proceeds in four steps: first quality is assessed either by a single indicator or by a
18	composite measure; second cost is assessed, typically by a single measure of total costs;
19	third, either or both of the quality and cost domains are classified into performance groups
20	– frequently as "low", "average", or "high" – using specified criteria; fourth, the quality and
21	cost classifications are combined to assess efficiency. A common approach is to define high
22	efficiency providers as those that are classified as both high quality and low cost.

1	Alternatively, the Net-Incentive Payment Model assesses the difference in costs between
2	providers within the same quality grouping. The Conditional Model is widely used by
3	private payers to create tiers of providers based on their efficiency.
4	The Unconditional Model. The unconditional model follows the first two steps of the
5	Conditional Model. Then, the quality and cost domains are assigned weights and combined
6	into a single metric. Thus, in the Unconditional Model, quality and cost are scored
7	independently and then combined. This is the model currently used by Hospital Value-
8	Based Purchasing.
9	The Quality Hurdle Model and Cost Hurdle Model: A variation on the Conditional Model is
10	the Quality Hurdle Model. This model follows the first three steps of the Conditional Model.
11	Then, providers are subject to a minimum quality standard, the hurdle, before their cost
12	performance is assessed. After meeting this minimum quality standard, providers may be
13	judged on cost performance alone or may be evaluated based on their combination of
14	quality and cost performance. A variation on the Quality Hurdle Model is the Cost Hurdle
15	Model. Here, providers are evaluated on quality performance only after meeting a cost
16	standard, which is typically defined as having costs that are below a specified growth rate.
17	Hurdle Models are commonly used for shared savings programs.
18	The Regression Model: The regression model, proposed by Timbie and Normand, ³² profiles
19	provider quality while conditioning on cost. While it is conceptually similar to the
20	Conditional Model, it has the advantage of using regression analysis to account for the
21	within-provider correlation between quality and cost outcomes. In contrast, the approach

taken by the Conditional Model does not account for any correlation between the quality
and cost domains. The regression model is not currently used by any program sponsor.

The cost-effectiveness model: The cost-effectiveness model, proposed by Timbie and 3 Normand,³² differs from the other approaches in that it assigns a dollar value to the patient 4 5 benefits accrued from quality domain. By doing so, this approach can dramatically change efficiency profiles. For instance, using the Unconditional or Conditional Model, a hospital 6 with excellent mortality outcomes may be classified as having only moderate efficiency if it 7 8 also has high costs. However, if the benefit of increased survival is appropriately valued and the absolute cost differences between this hospital and others are not great, this high 9 cost hospital may in fact have excellent efficiency: it is producing desirable health outputs 10 11 at a lower cost than other hospitals. A similar approach towards efficiency measurement was developed by Kessler and McClellan to evaluate the cost-effectiveness not of 12 individual providers, but of the characteristics of hospitals.³⁴ 13

14 The Data Envelopment Analysis or Stochastic Frontier Analysis Model: This approach is used to identify the efficient production of quality across all observed levels of cost.^{35,36} 15 The efficient frontier is modeled and providers' efficiency can then be evaluated based on 16 their distance from the efficient frontier. One of the key advantages of this approach is 17 that it allows efficiency to be evaluated across continuous measures of cost and quality. It 18 19 therefore does not require classification of providers into categories based on what may be 20 arbitrary threshold values, a shortcoming of other approaches. This approach has been widely used in academic research to assess economic efficiency in health care, although 21 almost exclusively in cases in which the output of interest is something other than quality 22

1	of care. ¹³ This approach is not currently used by any program sponsors to evaluate
2	provider efficiency.

3	The Side-by-Side Model: This approach does not combine the quality and cost domains in
4	any way. It follows the first two steps of the Conditional Model, then concludes by
5	displaying the results in summary form. This model typically emphasizes the clear and
6	intuitive display of indicators of quality and cost (e.g. star ratings). However, by leaving the
7	specific combination of cost and quality unspecified when assessing efficiency, this model
8	leads directly to value estimations by stakeholders.
9	Programs using cost and quality measures to assess efficiency
10	Exhibit 1 describes identified programs that link indicators of cost and quality to
11	measure efficiency. We describe the characteristics of 25 programs for which we were able to
12	obtain sufficiently complete information.
13	Of these programs, 11 profiled physicians or physician practices, 5 profiled hospitals or
14	surgical centers, 3 profiled both physicians and hospitals, and 6 profiled health systems or
15	health plans. To combine quality and cost indicators, 4 of the identified approaches used the
16	Conditional Model, 6 used the Unconditional Model, 5 used the Side-by-Side Model, and 8 used
17	the Quality Hurdle or Cost Hurdle Model. ⁱⁱ The method used to combine quality and cost
18	indicators was unclear for 2 programs.

ⁱⁱ While Veterans Affairs hospitals use stochastic frontier analysis to profile the efficiency of hospitals, assessment of efficiency does not consider quality of care as an output.

1 Section 3. Illustration of models to combine indicators of cost and

2 quality

3	We illustrated the implementation of several of the models to combine quality and cost
4	measures to provide a clearer idea about their similarities and differences. To do this, we
5	downloaded data on hospital cost and quality from the May 2, 2014 release of Hospital
6	Compare (<u>www.medicare.gov/hospitalcompare</u>). Our measure of cost is Medicare Spending per
7	Beneficiary (MSPB), an NQF endorsed measure (NQF #2158). The measure captures price-
8	adjusted Medicare spending for all services (inpatient, outpatient, home health, hospice, skilled
9	nursing, and durable medical equipment) for acute care hospitals for all admissions in the 3
10	days prior to admission and 30 days after discharge. We specified cost using the ratio of the
11	national total spending per episode to individual hospitals' total hospital spending per episode.
12	A higher value indicates higher cost performance (i.e., lower cost relative to the national
13	average).
14	The measure of quality is the Total Performance Score from Hospital Value-Based
15	Purchasing. The Total Performance Score is a composite measure capturing hospital quality
16	performance related to clinical process performance (45%), patient experience (30%), and
17	outcome performance (25%). The measure incorporates both quality attainment and quality
18	improvement. Higher scores indicate higher quality performance.
19	We merged cost data from 3,260 acute care hospitals with quality data from 2,728

We merged cost data from 3,260 acute care hospitals with quality data from 2,728 hospitals. Our analytic sample was 2,728 hospitals. Before combining indicators, we standardized the quality and cost indicators by subtracting the mean and dividing by the

standard deviation. The distribution of the quality and cost measures are shown in Exhibit 2.
 We linked quality and cost measures to measure efficiency using the following models:

3	1. The conditional model: The conditional model linked quality and cost by assessing
4	cost performance for a given level of quality. We calculated two separate versions
5	of the conditional model that varied with respect to the precision of the quality
6	groupings. The first version classified hospitals into terciles of quality performance
7	and then classified hospitals into cost tritiles: low (bottom 25%), average (middle
8	50%), and high (top 25%) cost performance. In the second version, hospitals were
9	classified into quality tritiles, and then classified into cost tritiles within each quality
10	tritile. In the second model, we assigned an efficiency score of "9" (the highest
11	score) for the top quality and top cost tritile, decreasing to "1" for the bottom
12	quality and bottom cost tritile.
13	2. The unconditional model: The unconditional model linked quality and cost
14	measures through a weighted combination of measure scores. We calculated two
15	separate versions of the unconditional model, one using 70% quality and 30% cost,
16	the other using 30% quality and 70% cost.
17	3. The quality hurdle model: The quality hurdle model linked quality and cost
18	measures by setting the quality hurdle at the 25 th percentile. Below the 25 th
19	percentile of quality, hospitals received an efficiency score of 0. Above the 25 th

21 performance.

20

10

percentile of quality, hospitals' efficiency was determined based on their cost

1	4. The cost hurdle model: The cost hurdle was similarly set at the 25 th percentile.
2	Below the 25 th percentile of cost performance, hospitals received an efficiency
3	score of 0. Above the 25 th percentile of cost performance, hospitals' efficiency was
4	determined based on their quality.
5	5. The stochastic frontier model: The stochastic frontier model linked quality and cost
6	measures by estimating quality as a function of cost. Efficiency was then assessed
7	based on hospitals' "technical efficiency", a measure of hospitals' distance from the
8	frontier.
9	We did not illustrate the linking of cost and quality using the side-by-side model, because this
10	model does not formally combine measures of cost and quality. We also did not link cost and
11	quality measures using the regression model or the cost-effectiveness models because these
12	models require patient-level data.
12 13	models require patient-level data. Exhibit 3 shows the hurdle models, Exhibit 4 shows the unconditional models, Exhibit 5
12 13 14	models require patient-level data. Exhibit 3 shows the hurdle models, Exhibit 4 shows the unconditional models, Exhibit 5 shows the conditional models, and Exhibit 6 shows the stochastic frontier model. For each of
12 13 14 15	models require patient-level data. Exhibit 3 shows the hurdle models, Exhibit 4 shows the unconditional models, Exhibit 5 shows the conditional models, and Exhibit 6 shows the stochastic frontier model. For each of these models, greater cost performance denotes lower cost. Hospitals toward the top right of
12 13 14 15 16	models require patient-level data. Exhibit 3 shows the hurdle models, Exhibit 4 shows the unconditional models, Exhibit 5 shows the conditional models, and Exhibit 6 shows the stochastic frontier model. For each of these models, greater cost performance denotes lower cost. Hospitals toward the top right of the scatter plot have higher efficiency while those toward the bottom left have lower efficiency.
12 13 14 15 16 17	models require patient-level data. Exhibit 3 shows the hurdle models, Exhibit 4 shows the unconditional models, Exhibit 5 shows the conditional models, and Exhibit 6 shows the stochastic frontier model. For each of these models, greater cost performance denotes lower cost. Hospitals toward the top right of the scatter plot have higher efficiency while those toward the bottom left have lower efficiency. The precise determination of efficiency depends on the model used to combine quality and cost
12 13 14 15 16 17 18	models require patient-level data. Exhibit 3 shows the hurdle models, Exhibit 4 shows the unconditional models, Exhibit 5 shows the conditional models, and Exhibit 6 shows the stochastic frontier model. For each of these models, greater cost performance denotes lower cost. Hospitals toward the top right of the scatter plot have higher efficiency while those toward the bottom left have lower efficiency. The precise determination of efficiency depends on the model used to combine quality and cost indicators.
12 13 14 15 16 17 18 19	models require patient-level data. Exhibit 3 shows the hurdle models, Exhibit 4 shows the unconditional models, Exhibit 5 shows the conditional models, and Exhibit 6 shows the stochastic frontier model. For each of these models, greater cost performance denotes lower cost. Hospitals toward the top right of the scatter plot have higher efficiency while those toward the bottom left have lower efficiency. The precise determination of efficiency depends on the model used to combine quality and cost indicators. Exhibit 7 shows a correlation matrix between the efficiency scores generated from the
12 13 14 15 16 17 18 19 20	models require patient-level data. Exhibit 3 shows the hurdle models, Exhibit 4 shows the unconditional models, Exhibit 5 shows the conditional models, and Exhibit 6 shows the stochastic frontier model. For each of these models, greater cost performance denotes lower cost. Hospitals toward the top right of the scatter plot have higher efficiency while those toward the bottom left have lower efficiency. The precise determination of efficiency depends on the model used to combine quality and cost indicators. Exhibit 7 shows a correlation matrix between the efficiency scores generated from the alternative models. It indicates a low to high degree of correlation between the efficiency
12 13 14 15 16 17 18 19 20 21	models require patient-level data. Exhibit 3 shows the hurdle models, Exhibit 4 shows the unconditional models, Exhibit 5 shows the conditional models, and Exhibit 6 shows the stochastic frontier model. For each of these models, greater cost performance denotes lower cost. Hospitals toward the top right of the scatter plot have higher efficiency while those toward the bottom left have lower efficiency. The precise determination of efficiency depends on the model used to combine quality and cost indicators. Exhibit 7 shows a correlation matrix between the efficiency scores generated from the alternative models. It indicates a low to high degree of correlation between the efficiency scores generated from the different models. The quality hurdle model has a relatively weak

1 correlation with the other models (with the exception of the unconditional (30% quality) model 2 r=0.78). The cost hurdle model is most strongly correlated with the unconditional (70% quality) model (r=0.81), the conditional (r=0.76), and the frontier model (r=0.87). The unconditional 3 4 (70% quality) model is also highly correlated with the unconditional (30% quality) (r=0.66) and 5 the frontier model (r=0.95), while the conditional model is strongly correlated with the frontier 6 model (r=0.88). Together, this analysis indicates that the alternative approaches generate 7 meaningfully different efficiency signals. This has important implications for efficiency profiling 8 using these models.

9 This analysis also gives a sense of some of the pros and cons of different methods for profiling. For instance, so long that quality performance does not re-enter efficiency profiles 10 11 after the hurdle is exceeded, the quality hurdle model places much greater emphasis on costs, rather than quality, when assessing efficiency. This can be seen by its correlation with the 12 unconditional model (30% quality). The opposite is true for the cost hurdle model. The analysis 13 also highlights that, while the creation of efficiency tiers is straightforward with the conditional 14 model, deriving nominal efficiency scores from the conditional model requires a separate 15 16 scoring system that assigns a value to conditional cost and quality performance. Tompkins and colleagues³⁰ propose one method to do this, but others are possible. 17

In the analysis of cost and quality data available on Hospital Compare, lower cost is associated with lower quality: a 1% increase in cost performance (lower costs) is associated with a 0.19% decrease in quality performance (*p*<.01). Nonetheless, the analysis indicates that it is possible for hospitals to have both excellent quality performance and excellent cost performance: there are a number of hospitals that are close to two standard deviations higher

1 than the mean for both quality and cost performance. In other circumstances, there may be 2 greater trade-offs between improving quality and increasing costs. In such cases, program sponsors should accommodate their expectations to the reality of cost and quality trade-offs. 3 To further illustrate this point, **Exhibit 8** shows the cost per beneficiary and quality 4 5 scores from a hypothetical sample of hospitals. The vertical axis is spending per beneficiary and 6 the horizontal axis is the hospital's total quality score. The quality scores are expressed here from 0 to 1, with 0 being the lowest quality and 1.00 being the highest. Contrary to the 7 8 specification of costs to illustrate the alternative models to combine quality and cost, in this 9 example, higher levels of cost indicate worse cost performance. A trend line has been fitted to the data. 10

As can be seen from Exhibit 8, there is a slight positive correlation between cost and 11 12 quality for these hospitals. This is not to say that cost and quality are slightly positively correlated for all hospitals presently or that this relationship will continue in the future. As the 13 14 health care system evolves and our ability to measure quality improves, cost and quality may very well become negatively correlated. Moreover, the nature of the relationship between 15 16 resource requirements and quality may vary across dimensions of quality. For example, improving certain outcomes or adhering to best practices may result in greater resource 17 18 requirements, suggesting the positive correlation. Meanwhile, quality improvements in patient safety and medical errors may result in lower costs from complications and treatment failures, 19 20 resulting in a negative correlation between specified levels of quality (patient safety) and total cost of care (including complications and additional services) (Exhibit 9). Similarly, more 21

extensive substitution of hospice and palliative care for higher-cost, marginally futile treatment
 approaches may have corresponding improvements in patient experience.¹²

After calculating objective efficiency based on principles and empirical calculations, a
user could then determine what value to place on that efficiency score based on subjectivepreference weighting.

6 **Exhibit 10** provides an illustrative example of how to value hospital performance under 7 a star rating system. The Total Quality Score (horizontal axis) and the efficiency score (vertical 8 axis) are used to assign the value scores (i.e., determine the number of stars). Note that the 9 same efficiency score is valued differently depending on the total quality score: higher total 10 quality results in a greater value (number of stars) for the same efficiency score. Such a star 11 rating system might be suitable for public reporting.

Once the assessment (i.e. number of stars) of the hospital performance has been made, it could be quantified by adjusting a hospital's Total Quality Score (0 to 100 points) upwards or downwards depending on its efficiency rating. An illustrative example is provided in **Exhibit 11**.

15

16

1

Section 4. Summary of findings from environmental scan

2	Our environmental scan and illustration of alternative models for combining quality and
3	cost indicators highlights a number of key issues related to measuring efficiency in health care.
4	First, there are numerous extant approaches and no clear consensus about best
5	practices. Of the 25 identified programs, we documented five broad approaches to combine
6	quality and cost indicators. There is considerable variation within these approaches. Many of
7	the quality measures included in the quality domains are exclusively measures that are
8	endorsed by the NQF or by professional societies. The cost measures used to assess efficiency,
9	however, have generally not been endorsed by the NQF.
10	Interestingly, the measure sets used to assess quality for many of the approaches taken
11	by the private payers are more expansive than those used by the public payers. For instance,
12	many of the private efficiency efforts profile specialist physicians, who have been largely
13	ignored by public programs. The purpose of efficiency measurement is also different in the
14	public and private efforts: the public efforts seek to use efficiency measurement to adjust
15	provider payments whereas the private efforts use efficiency measurement to create tiered
16	networks or for shared-savings programs.
17	The alternative approaches used to combine cost and quality measures have a number
18	of pros and cons. The Conditional Model, the Unconditional Model, the Side-by-Side Model,
19	and to a lesser extent the Hurdle Models all have the benefit of being relatively easy to
20	understand. (Many of the program sponsors emphasized the importance of transparency,
21	describing efficiency measurement in simple terms on their website but also publishing detailed

1 methodology reports.) However, these approaches suffer from two separate aggregation 2 problems that may undermine their validity. First, quality is almost always defined using 3 multiple measures, and some kind of weighting scheme is required to summarize the 4 performance of providers on these measures. The opportunity model, in which weights are 5 based on the number of patients that are eligible to receive a given measure, remains a 6 common approach to creating composite measures of quality. Another approach, used by the 7 Alternative Quality Contract, assigns triple the weight to outcome measures relative to process 8 measures. Both of these approaches to weighting measures, however, are largely arbitrary. A 9 recent paper found that among 13 commonly used quality indicators, 7 of them accounted for 93% of the benefits to population health.³⁷ If weights assigned to individual performance 10 11 measures do not reflect their importance to the health of patients, weighting schemes will, at a minimum, obscure the signal between observed quality and patient health.³⁸ 12 Second, as previously described, efficiency measurement has the potential to reach 13 14 erroneous conclusions about the relative efficiency of providers when the relationship between measured quality and patient health is not well defined. If quality is measured by patient 15 16 survival, then small improvements have the potential to yield large efficiency gains, even at 17 large costs. However, if quality is measured by a series of measures that have little relationship 18 with improved patient health, large improvements may not yield efficiency gains, even at small

19 costs. ³²

Among existing programs, there is a divergence in the practice of price standardization.
 The public programs (Hospital Value-Based Purchasing, the Physician Value-Based Payment

Modifier, and the ACO programs) standardize payments when measuring efficiency. The private
 plans vary with respect to price standardization, but tend not to standardize prices.

Variation in the prices of health care services charged by different health care providers, 3 particularly among private payers, is well documented.³⁹ Variation in prices among private 4 5 payers is driven largely by the result of negotiations between private payers and individual 6 providers. Measures of health care spending (i.e., cost) that do not first standardize prices will measure costs as the product of price and the quantity of services for individual providers. 7 8 Measures of spending that standardize prices substitute individual provider prices with average 9 prices across the population of providers. The decision of a program sponsor to use either unstandardized or standardized prices depends on the needs of the end user. Individual 10 11 patients are likely to care more about out-of-pocket spending. However, given the vast array of insurance products, the information needs are extraordinary to estimate patient cost-sharing 12 associated with a certain procedure or episode of care from a certain provider. For patients 13 with high deductible plans unstandardized prices will likely provide a better guide for out-of-14 15 pocket spending. Private insurers that are using tiered benefits designs to encourage patients to get care from lower-priced, higher quality providers are also likely to prefer unstandardized 16 17 prices as well. This highlights the importance of not "stripping out" variation that is meaningful 18 for consumers and program sponsors through price standardization. On the other hand, program sponsors with well-established reasons for price variations (e.g. Medicare's index for 19 20 geographic variation in input prices, and supplemental payments for indirect medical education 21 and disproportionate share for hospitals) may wish to highlight differences in resource use, and 22 therefore use standardized prices.

1	There also appears to be a general ambivalence on the part of program sponsors with
2	respect to harmonization within the quality and cost domains. This includes harmonization of
3	the quality and cost domains for the same populations of patients (i.e., cost is often assessed
4	for all patients while the quality measures apply to a narrower set of patients), for the same
5	time intervals of measurement (i.e., the quality measures were assessed over much longer time
6	windows than the cost measures), and the methods used to risk adjust for cost and quality
7	outcomes (e.g. Hospital Value-Based Purchasing uses different approaches for quality and cost).
8	Over time, efficiency profiling appears to have shifted away from hospitals and towards
9	profiling the efficiency physicians and physician practices. The early efforts in efficiency profiling
10	focused on hospitals, ²⁶ but many now profile physicians and physician groups. This may have to
11	do with the increase in ambulatory measures and advances in physician attribution
12	methodology but may also reflect the increased bargaining power of hospitals.
13	Importantly, for the examined approaches for combining quality and cost measurement,
14	there is virtually no assessment of the reliability and validity of efficiency measurement. ⁵ In
15	almost all cases, a single measure of efficiency is not defined. Instead, efficiency is defined
16	through the joint consideration of quality and cost, with classification typically based on
17	threshold values for both scales. While there is widespread recognition of the small sample size
18	problem associated with efficiency measurement, the most common solution is to use a sample
19	size cut-off as an exclusion criterion for providers' data to be profiled. Outside of Hospital
20	Value-Based Purchasing, Bayesian reliability adjustment is not used to increase the reliability of
21	efficiency measurement, although Leapfrog has used reliability adjustment for some surgical
22	mortality measures. 40

Section 5. Combining indicators of quality and cost for different use cases

3	Indicators of quality and cost could be combined for a variety of "use cases." Potential
4	use cases include public quality reporting, pay-for-performance, network design, and internal
5	efficiency profiling and improvement. The key question is whether and how the criteria for
6	selecting models to combine quality and cost indicators may depend on a specific use case.
7	What are the trade-offs that one might consider in selecting a model for a specific purpose?
8	The following are some principals that could be applied to combining quality and cost indicators
9	for different use cases:
10	1. When measuring efficiency, neither the cost nor quality signals should be obscured.
11	Therefore, provider-level profiles of efficiency should show indicators of cost, quality,
12	and efficiency side-by-side. This is particularly relevant for public quality reporting but is
13	also recommended to ensure transparency for pay-for-performance, network design,
14	and internal profiling and improvement. Consumers and referring providers typically
15	make highly subjective and idiosyncratic choices about which treatments consumers
16	should receive from which providers. Displaying measures of cost and quality can
17	provide stakeholders with inputs to their own subjective and implicit preference-
18	weighted decisions case-by-case. When making treatment decisions, consumers can
19	supplement these objective measures with past experience, familiarity, convenience,
20	and informal advice from trusted sources. In situations involving terms of regulation or
21	contracting, the disclosure of individual measures in all relevant domains allows
22	stakeholders to understand the individual components which also should be disclosed

for transparency. Few of the current applications that use the side-by-side model to link
measures of cost and quality also display a side-by-side measure of efficiency. Using one
of the other identified models to profile efficiency, and then displaying this efficiency
information alongside that of quality and cost, help consumers and stakeholders
evaluate "value" based on their own preferences. This display of information is
consistent with that of private-sector "value" ratings (e.g. US News and World Report
and Consumer Reports, see Appendix A).

8 2. The choice of the model to combine measures of quality and cost should depend on the aims of the use case. Efficiency scores and profiles should be developed and displayed 9 across the entire relevant range of specific levels of quality. Quality and efficiency can 10 11 be measured continuously or discretely. If discrete measures are used (e.g. a star system), categories should reflect meaningful differences across providers rather than 12 arbitrary classifications based on distributions (e.g. centiles). For use cases involving 13 14 public reporting of costs, it is important to anticipate the perspective of the decisionmaker. Third-party payers are concerned with payments for covered services related to 15 the particular focus of measurement, which may include broad classes of care such as 16 17 ambulatory surgeries, inpatient admissions, or primary care management of various 18 acute and chronic illnesses. For example, a health plan would evaluate the efficiency or value of surgical procedures based on formulaic or negotiated payment rates for facility 19 20 and professional services (separately or bundled). A consumer perspective would focus 21 on out-of-pocket payments for deductibles, coinsurance, and copayments for the full episode of care. Generally, providers are not identical or necessarily similar in their 22

relative quality, cost, efficiency, or value across lines of service; hence, the NQF
 framework for measuring resource use differentially for specific patient-focused
 episodes of care.

3. Models that combine indicators of quality and cost differ with respect to the relative 4 5 weight or importance that they place on quality and cost. For instance, the quality hurdle model places greater emphasis on cost performance, while the cost hurdle places 6 greater emphasis on quality performance (see Exhibit 3 and Exhibit 7). The choice of 7 8 model used to combine quality and cost measures could have a significant impact on the 9 relative importance of incentives to reduce costs or improve quality. Generally, failure to distinguish differences in performance in all cases above or below a hurdle or 10 11 threshold correspondingly reduces incentives for achieving better performance within such wide ranges. Therefore, policymakers and stakeholders should carefully consider 12 how the choice of model to combine quality and cost measures best meets the goals of 13 14 the use case.

4. Whenever possible, continuous measures of efficiency are preferable to arbitrary 15 16 classifications, particularly classification based on rankings. For some applications, such as network design, discrete classifications are necessary in order to group providers into 17 different network tiers. However, discrete classifications add to measurement error by 18 grouping heterogeneous providers in homogenous groups. To avoid the potential issue 19 20 of false precision introduced by the use of continuous scores, variance estimates (such as confidence intervals) should be used whenever possible. Classifications based on 21 rankings (e.g. percentiles) have the potential to magnify the importance of small 22

1		differences in efficiency if scores are clustered close to threshold values. In some cases,
2		this problem can be addressed through measure selection, i.e., by excluding quality
3		measures that are "topped out;" (i.e., average scores close to the theoretical maximum
4		performance level).
5	5.	When combining measures of quality and cost to assess provider efficiency, it is
6		essential that risk-adjustment procedures are appropriately implemented to hold
7		variation in patient severity constant across providers. Standard risk-adjustment
8		procedures use "indirect standardization" in which regression analysis using the entire
9		sample of patients is used to assign severity weights to individual comorbidities and risk
10		factors. These weights are then used to calculate the ratio of "observed" (or "predicted"
11		⁴¹) outcomes, as well as "expected" outcomes, ⁴² and combine these to evaluate
12		providers' outcome performance while holding risk constant. However, this approach
13		may be optimal for two reasons: 1) if samples do not overlap on risk factors; and 2) if
14		the functional form of the regression model does not fully account for differences in
15		risk. In either case, provider outcome profiles may be confounded by specific
16		characteristics that are unrepresented in other providers. Under these circumstances,
17		matching using "direct standardization" may account for differences in severity across
18		providers more effectively. ⁴³ In addition, when presenting quality and cost measures,
19		quality performance should be displayed in its original form, and not be adjusted for
20		cost (and vice versa). Such adjustment would not allow quality and cost to be evaluated
21		as separate constructs, which is critical for side-by-side comparisons.

1	6.	When efficiency measures are incorporated as part of public reporting programs,
2		program sponsors should adhere to best practices for the display of information. ⁴⁴
3		Likewise, program sponsors should incorporate efficiency measures into pay-for-
4		performance programs using best practices for program design. ²³
5		

The NQF has a number of options for how it could advance evidence-based methods to 2 3 link quality and cost measures to assess efficiency in health care. First, NQF could use it existing endorsement process in several ways: 4 1. Request that developers of cost or resource use measures specify a link with 5 quality measures. The submission form for cost and resource use measures could 6 7 include a section asking developers to include a variety of additional information related to how a cost or resource use measure would be linked to quality 8 performance. Developers would not be required to submit this information in order 9 for a cost or resource use measure to be endorsed, but this information could help 10 NQF committee members and eventually stakeholders understand the intended use 11 12 of the measures in practice. The following could be requested of developers of cost or resources use measures in the endorsement process: 13 a. Identify quality measures that are relevant for the proposed cost or 14 resource use measure. The selected quality measures should be reliable, 15 16 valid, useable, feasible to collect, and related to the proposed cost or resource use measure (e.g., both measures assesse performance for patients 17 with the same diagnosis or patients receiving care for the same procedure). 18 19 The selected quality measures should be endorsed by NQF, unless other measures are identifiable that are more aligned with the cost measure, or 20 more appropriate for linkage. The type of quality measure (structure, 21

1 Section 6. Implications for the National Quality Forum

1 process, outcome, or patient experience) should depend on the use case (see 2 below). There is a place for process measures, which often are useable and actionable, but they should be proximal to an outcome. Whenever possible, 3 4 it is preferable for the specifications of the cost and quality indicators to be 5 harmonized. This includes measuring cost and quality for comparable populations of patients, for the same time intervals of measurement, and the 6 7 methods used to risk adjust for cost and quality outcomes. Optimally, this 8 would be done around common episodes. However, it may often not be 9 possible or reasonable to harmonize cost and quality measures given prevalent limitations in current measures. One key reason for that is 10 11 composite measures are often used to measure quality performance, and the individual measures contained in composite measures often have different 12 13 data capture periods and apply to different populations. Nonetheless, this is a principle to strive for in future measure development. 14 b. Determine whether and what type of composite measures will be used to 15 16 measure quality. Composite measures have important uses. For instance, 17 consumers may prefer a single score that is easy to interpret, and program 18 sponsors may need a single score to evaluate providers (e.g. for pay-for-

performance). There are a number of approaches to create composite
 measures. These include all-or-none composites (requiring that a patient
 receive all recommended care for the composite to be met), composites
 based on opportunities (equal to the sum of successfully achieved processes

1 of care divided by the opportunities to provide recommended care), and 2 composites that assign different weights to different types of measures (e.g., weighting outcome measures more heavily).⁴⁵ There are also a number of 3 NQF-endorsed composite measures. While it is preferable for programs to 4 5 use NQF-endorsed composite measures, the dearth of these measures make this unreasonable in most cases. Instead, programs should have a reasonable 6 7 justification for the weighting of individual measures, including the known correlation between measures and patient outcomes.³⁷ 8 9 c. Combine the quality and cost indicators in a manner that is most appropriate for a likely use case. Issues related to combining cost and 10 11 quality measures for different use cases are described in the previous section. In some instances, the same measures and models to combine 12 indicators may be used for multiple use cases (e.g., pay-for-performance and 13 14 public quality reporting). Side-by-side displays of measures, for example for public reporting, can include measures that are scored on mastery, rather 15 than relative performance or rankings. For example, if a large majority of 16 17 providers have similar or even identical scores on a measure, it may be 18 informative and reassuring for consumers to be aware that their options are similar, or possibly all excellent, on that measure. Distinguishing relative 19 20 performance, on the other hand, requires "grading on the curve," with 21 meaningful underlying differences that are measured reliably.

1The benefit of simply requesting that measure developers provide this additional2information is that this detail would likely be useful for NQF committees making3endorsement decisions. The optional nature of this information would also minimize4the burden for developers. The downside of this approach is that – because this5information would not be required for endorsement – it may not be provided by6developers.

7

2. Require that developers of performance measures specify a link with

8 corresponding quality or cost measures. Instead of requesting information from 9 developers about how cost or resource use measures could be linked to quality, NQF could require developers to provide this information. This could be done by 10 modifying the current "usability and use" criterion. This criterion is defined as the 11 "Extent to which potential audiences (e.g., consumers, purchasers, providers, 12 13 policymakers) are using or could use performance results for both accountability and performance improvement to achieve the goal of high-quality, efficient healthcare 14 for individuals or populations." NQF could require developers to satisfactorily 15 provide the information described above in order to meet this criterion. 16 The benefit of requiring developers to provide this information is that it would 17 ensure that there was a specified plan through which cost or use measures would be 18 19 linked to quality measures in a reasonable and valid manner. The main drawback of this approach is that it would increase the burden of developers when submitting 20 measures for endorsement. This may decrease the incentives of developers to 21 22 submit these measures to NQF.

3. Create a separate endorsement process for efficiency measures that link cost and 1 2 quality measures. To date, few stand-alone measures are being used to assess efficiency. Instead, efficiency is largely being assessed as the output of alternative 3 models that link quality and cost measures (see Section 2). However, a number of 4 5 measure-developers have established sufficiently detailed processes to measure efficiency that they could submit for NQF endorsement. If the NQF decided to 6 7 endorse approaches to efficiency measurement it could consider a number of 8 guidelines. First, the NQF could stipulate that the quality and cost measures used to 9 evaluate efficiency should have been previously endorsed. If not, the developer would have to provide a compelling reason. Second, the NQF could provide guidance 10 11 with respect to whether specifications of quality and cost measures should be harmonized. This may result in the modification of the specifications of measures 12 13 that have previously been endorsed by the NQF. Third, the output of the efficiency measures should meet the standards of scientific acceptability established by the 14 NQF. Specifically, efficiency classifications should be reliable and valid, and statistical 15 testing should be able to demonstrate this. If efficiency measures were endorsed, 16 NQF could provide guidance about how these measures should be used in 17 accountability programs (e.g., that they be displayed side-by-side with cost and 18 19 quality measures for any reporting application). If NQF chose to endorse stand-alone efficiency measures, the quality of these 20 measures would likely improve, as the measures would need to pass the rigorous 21

22 scientific criteria that are required for endorsement. The endorsement process may

also elevate the profile of efficiency measures, encouraging their use. The downside 1 2 of NQF choosing to endorse efficiency measures is that, if this strategy was pursued in lieu of recommendations #1 and #2, cost and resource use measures could 3 continue to be endorsed without an explicit link to quality measures. NQF and 4 5 others would then have to wait for developers to submit an efficiency measure that 6 linked a newly endorsed cost or resource use measure, which may never occur. 7 4. Use the Measures Application Partnership to advance the linking of cost and 8 quality programs. Apart from using the endorsement process, NQF could use its 9 Measures Application Partnership to promulgate evidence-based efficiency assessment. The Measures Application Partnership is a multi-stakeholder 10 11 partnership organized by NQF to provide guidance to the Department of Health and Human Services about the use of performance measures in public accountability 12 13 programs. The scope of the Measures Application Partnership could be expanded to 14 offer recommendations about linking cost and quality measures to assess efficiency in health care. The Measures Application Partnership could use this report as a 15 foundation to provide this kind of guidance to influence evidence-based 16 policymaking. 17

These recommendations could be pursued either alone, or in combination. For instance, measure developers could be asked to require additional information about how quality would be linked to cost or resource use measures (recommendation #1) and NQF could allow standalone resource use measures to be separately endorsed (recommendation #3). Also, the use of

- 1 the Measures Application Process to encourage evidence-based efficiency assessment could be
- 2 pursued independent of recommendations concerning the endorsement process.
- There are a number of outstanding questions about linking quality and cost to measure efficiency in health care. What is the reliability and validity of the alternative models of linking quality and cost? Would certain models systematically favor certain types of providers? How do consumers understand alternative models and displays of quality, cost, and efficiency information? How might alternative models create different incentives for provider behavior change? Future research should address these questions.
- 9

1 List of Exhibits

- 2 **Exhibit 1.** Summary of programs that combine quality and cost indicators to
- 3 measure efficiency
- 4 **Exhibit 2**. Distribution of quality and cost measures used in models
- 5 **Exhibit 3**. Illustration of quality hurdle and cost hurdle models
- 6 **Exhibit 4**. Illustration of unconditional model
- 7 Exhibit 5. Illustration of conditional model
- 8 Exhibit 6. Illustration of stochastic frontier model
- 9 **Exhibit 7.** Correlation between efficiency scores generated from alternative
- 10 models linking cost and quality indicators
- 11 **Exhibit 8.** Hypothetical example of cost per beneficiary and total quality scores
- 12 for sample hospitals (positive correlation)
- 13 **Exhibit 9.** Hypothetical example of cost per beneficiary and quality scores for
- 14 modified sample (negative correlation)
- 15 **Exhibit 10.** Illustrative efficiency value system
- 16 **Exhibit 11.** Adjusting the total quality score for efficiency

	Name of program	Services evaluated	Level of attribution	Specification of quality	Specification of cost	Approach to combining
						quality and cost
1.	Aetna Aexcel 46	12 categories of	Specialist and	Volume (at least 20 episodes	All costs attributed	Variation on Quality
		specialty services ^{iv}	physician practice	in the last year)	to specialists for	Hurdle model. Quality
			level	clinical performance	specific episodes of	and volume are assessed
				structure measures (use of	care	first. If costs are lower
				technology, certification)		than threshold based on
				completion of performance-		peer performance,
				based improvement module		providers are designated
				claims based measures		for Aexcel network.
				(HEDIS, readmissions, in-		
				hospital complications)		
2.	Anthem Blue	5 categories of	Specialist and	Receipt of designation from	Combination of all	Quality hurdle model.
	Precision	specialty services ^v	physician practice	National Committee for	attributed costs,	Physicians must first be
			level	Quality Assurance (NCQA) or	diagnostic testing,	recognized for quality.
				Bridges to Excellence, or	prescription use,	Physicians are then
				performance on clinical	procedures and	designation for
				process measures.	follow-up care, and	recognition if their cost
					hospital care.	performance is not
						significantly higher (p <
						.10) of 110% the
						geographic average.
3.	Blue Cross and Blue	6 categories of	Hospital	Nationally consistent	All costs for specific	Quality Hurdle Model
	Shield Blue	specialty services ^{vi}		measures based on structure,	episodes of care	

Exhibit 1. Summary of programs that combine quality and cost indicators to measure efficiencyⁱⁱⁱ

ⁱⁱⁱ In addition to the programs identified in this table, we are aware of a number of other programs that appeared to combine indicators of quality and cost to measure efficiency. These include programs initiated by Castlight Health, the Minnesota Smart Buy Alliance, PacifiCare, the Puget Sound Health Alliance, Blue Shield of Oregon, Tufts Health plan, and the Wisconsin Department of Employee Trust Funds. However, we were unable to obtain detailed information about how the programs were specified.

^{iv} Cardiology, Cardiothoracic surgery, Gastroenterology, General surgery, Neurology, Neurosurgery, Obstetrics and gynecology, Orthopedics,

Otolaryngology/ENT, Plastic surgery, Urology, and Vascular surgery

^v Rheumatology, cardiology, obstetrics/gynecology, endocrinology, and pulmonary medicine.

^{vi} Six specialty care areas are included: Spine Surgery, Knee and Hip Replacement, Cardiac Care, Transplants, Bariatric Surgery and Complex and Rare Cancers. The three specialty care areas with asterisks have Blue Distinction Centers; Blue Distinction Center+ designations will continue to roll out in other areas, beginning with Transplants in early 2014.

	Name of program	Services evaluated	Level of attribution	Specification of quality	Specification of cost	Approach to combining
						quality and cost
	Distinction Centers®			process, outcomes, and	(including facility,	
	for Specialty Care ⁴⁷⁻⁴⁹			patient experience. Hospitals	professional, other).	
				must meet quality thresholds		
				for each domain. Measures	Each provider's cost	
				were developed with input	of care is calculated	
				from the medical community.	on an episode basis,	
					using allowed	
					amounts based on	
					Blue Plans' claims	
					data. The cost of	
					care criteria takes	
					into account	
					outliers, patient	
					level risk factors,	
					and geographic	
					variation, before	
					each facility is	
					assessed against a	
					consistent national	
					benchmark.	
4.	Blue Cross Blue	All covered services	System level	Performance for 12 measures	Global budget	Combination of Quality
	Shield of Illinois and	for Advocate health			target	Hurdle and Cost Hurdle
	advocate health	care, a not-for-profit				Models.
	care ³⁰	integrate system				
5.	Blue Cross Blue	Hospitalized patients	Hospital	Composite index of	Diagnosis	Unconditional Model.
	Shield of Michigan	with specific index		collaborative Quality	standardized cost-	Payments are based on
	Hospital P4P	admissions		Initiatives, population based,	per-case	the weighted sum of
	program			performance, all-cause		quality and cost domains
				readmissions		
6.	Blue Cross	All covered services	Alternative Quality	32 ambulatory measures, 32	Global budget	Unconditional Model.
	Massachusetts		Contract provider	hospital measures. 5 Quality	target	High quality is rewarded
	Alternative Quality		organizations	"gates" for each measure,		as a bonus, can equal up

	Name of program	Services evaluated	Level of attribution	Specification of quality	Specification of cost	Approach to combining
						quality and cost
	Contract ⁵²			resulting in different bonus payments. Outcome measures are triple weighted. Non-linear function between		to 10% of global budget. ^{vii}
7.	Buyers Health Care Action Group Purchasing Initiative ^{55,56}	All services	Care systems in Minneapolis/St. Paul	quality score and payout. ^{35,54} Patient experience and participation in quality improvement initiatives.	Total costs	Side-by-Side Model
8.	Cigna Care Designation ⁵⁷	22 categories of specialist services ^{viii}	Physicians and physician groups	5 domains related to National Committee for Quality Assurance (NCQA) Physician Recognition; Group Board Certification; Composite quality index on adherence to 101 Evidence-Based Medicine (EBM) Rules; American Board of Internal Medicine Process Improvement Module Completion; Certified Bariatric Center Affiliated Surgeons.	Costs related to Episode Treatment Group (ETG) methodology	Conditional Model. Providers are compared by specialty within markets.
9.	Cigna Collaborative Accountable Care ⁵⁸	All covered services	Large primary care or multispecialty practices, integrated delivery system, of physician-hospital organization	Composite measure assessing adherence to evidence based medicine for preventive care, chronic care, and acute care.	Unclear	Quality Hurdle Model
10.	Health Partners Relative Resource	Primary care, specialty care, and	Physicians, physician practices,	Separate composite measures for primary care, specialty	Uses NQF endorsed total cost of care	Side-by-Side Model

^{vii} The AQC can be conceptualized two different programs that are not directly connected: a shared savings program and a quality bonus program.

^{viii} Allergy and Immunology, Cardiology, Cardio-Thoracic Surgery, Colon and Rectal Surgery, Dermatology, Ear, Nose and Throat, Endocrinology, Family Practice, Gastroenterology, General Surgery, Hematology and Oncology, Internal Medicine, Nephrology, Neurology, Neurosurgery, Obstetrics and Gynecology, Ophthalmology, Orthopedics and Surgery, Pediatrics, Pulmonary, Rheumatology, and Urology

	Name of program	Services evaluated	Level of attribution	Specification of quality	Specification of cost	Approach to combining
						quality and cost
	Use ⁵⁹	hospitals	and hospitals	care, and hospitals.	measure.	
				Components of composite	Encompasses all	
				differ for different types of	services	
				services.	with/without price	
					standardization.	
11.	Hospital Value-Based	Part A and Part B	Hospital	Sum of performance score	Episode covering	Unconditional Model
	Purchasing	Medicare services		(incorporating attainment and	standardized	
				improvement) for individual	payments from 3	
				measures in various domains	days prior and 30	
				(outcomes, clinical process,	days following	
				and patient experience)	hospitalization.	
12.	Integrated	Patient care among	Physician	31 clinical quality measures,	Per member per	Quality Hurdle and Cost
	Healthcare	seven health plans in	organizations	15 meaningful use measures,	months total cost of	Hurdle Models are used
	Association Value	California.		6 patient experience	care, including	together. Shared savings
	Based pay-for-			measures, 12 appropriate	physician, hospital,	model then adjusts
	performance			resource use measures.	pharmacy and	savings by quality
	program				ancillary payments.	performance.
13.	Kroger Centers of	Hip and knee	Hospitals and	Used Blue Cross and Blue	Unstandardized	Unconditional model.
	Excellence Program	replacement and	surgical centers	Shield Distinction criteria (see	reimbursement for	Quality and cost
		spine surgery		above) supplemented with	episode cost.	performance was
				information on facility		combined to form a
				rankings from published		single composite.
				reports (e.g. US News and		Facilities were classified
				World Report's Top 50		into four tiers based on
				Orthopedic Facilities)		composite performance.
14.	Leapfrog Hospital	Patients hospitalized	Hospital	Composite score of multiple	Inpatient costs	Conditional Model
	Rewards Program ⁶⁰	with AMI,		measures. Uses a two-level		
		pneumonia, or child		weighting approach based on		
		birth, or receiving		potential of indicator to		
		CABG or PCI.		reduce mortality and the		
				importance of the indicator to		
				the employer.		
15.	Maine Health	Adult care, pediatric	Physicians,	Composite measure based on	Whether practice is	Side-by-Side Model
	Management	care, and hospital	physician practices,	Bridges to Excellence /	"working to control	

	Name of program	Services evaluated	Level of attribution	Specification of quality	Specification of cost	Approach to combining quality and cost
	Coalition	care	and hospitals	Hospital Compare measures categorized into "low", "good", "better", and "best"	cost"	
16.	Maryland multi- payer patient- centered medical home program ⁵⁰	All covered services	Primary care practices	21 quality measures; and reductions in use of high-cost services.	Total costs for assigned patients.	The Cost Hurdle Model.
17.	Massachusetts Group Insurance Commission value- tiering program ^{61,62}	All covered services	Physician-level. Physician profiles various participating plans	Composite based on 79 quality measures relevant to particular providers	Price standardized episode costs based on Symmetry Episode Treatment Group methodology ⁶³	Unclear
18.	Medica and Fairview health services ⁵⁰	All covered services for Fairview Health Services, a non-profit health system	System level	Minimum quality gate, then confidential algorithm	Global budget target	Unclear
19.	Medicare Physician Group Practice Demonstration	Part A and Part B Medicare services	Integrated delivery systems	Performance for 32 ambulatory care performance measures.	Total costs per capita for aligned beneficiaries	Unconditional Model ^{ix}
20.	Medicare Shared Savings and Pioneer Accountable Care Organization programs ⁶⁴	Part A and Part B Medicare services	Accountable Care Organization	Composite measure of patient/caregiver experience (7 measures); Care coordination/patient safety (6 measures); Preventive health (8 measures); At-risk population: Diabetes (1 measure and 1 composite consisting of five measures);	Payment standardized total costs per capita for aligned beneficiaries	Quality Hurdle Model

^{ix} While it appeared that the Unconditional Model was used in the Physician Group Practice Demonstration, there was some uncertainty about this classification

	Name of program	Services evaluated	Level of attribution	Specification of quality	Specification of cost	Approach to combining
						quality and cost
				Hypertension (1 measure)		
				Ischemic Vascular Disease (2		
				measures); Heart Failure (1		
				measure); Coronary Artery		
				Disease (1 composite		
				consisting of 2 measures).		
21.	NCQA relative	Condition-specific	Health plan level by	Composite measure based on	Annual condition-	Side-by-Side Model
	resource use ⁶⁵	costs for people with	product (e.g. HMO,	HEDIS indicators relevant to	specific costs for all	
		specified chronic	PPO)	disease area	relevant services	
		diseases. [×]				
22.	Physician Value-	Part A and Part B	Physician practice	Composite measure of clinical	Composite measure	Conditional Model
	Based payment	Medicare services		care, patient experience,	of total costs per	
	modifier			population/community	capita for attributed	
				health, patient safety, care	beneficiaries, and	
				coordination, and efficiency.	for beneficiaries	
					with specific chronic	
					disease	
23.	Tufts Health Plan	Primary care	Physician practice	7 HEDIS process of care	Primary care	The Conditional Model.
	primary care "Blue			measures and 7 patient	Episode Treatment	The quality and cost
	Ribbon" program [™]			experience measures.	Groups	domains are standardized
				Calculate adjusted composite		and combined with equal
				process scores (z-scores), and		weighting. To be
				composite scores for patients		designated with the "Blue
				experience (z-scores). Scores		Ribbon", providers must
				were then summed and		be above the median on
				renormalized.		both the quality and cost
						domains, as well as the
						combined domain.
24.	UnitedHealth	25 categories of	Physician, physician	Composite score based on	Risk adjusted total	The Unconditional Model.
	Premium ⁶⁷⁻⁶⁹	specialist services. ^{xi}	practices	evidence based measures	cost of care	Provider designations are

^x Asthma, cardiovascular conditions, COPD, diabetes, and hypertension

^{xi} Allergy, Cardiology, Cardiology – Electrophysiology, Cardiology – Interventional, Endocrinology, Family Medicine, General Surgery, General Surgery - Colon/Rectal, Internal Medicine, Nephrology, Neurology, Neurosurgery – Spine, Ophthalmology, Obstetrics and Gynecology, Orthopedics - Foot/Ankle,

	Name of program	Services evaluated	Level of attribution	Specification of quality	Specification of cost	Approach to combining
						quality and cost
				related to preventive care, appropriate care, chronic disease care, patient safety, sequencing of care, and care outcomes.	(population cost), and episode cost measurement.	made separately for cost and quality based on statistical criteria. It's unclear how the different designations translate into payment or cost
						sharing differences.
25.	Virginia Cardiac Surgery Quality Initiative ⁷⁰	All cardiac surgical patients	Surgeon and hospital	Extensive structure (volume), process, and outcome (mortality and complication) measures.	Normalized hospital and surgeon charges ⁷¹	Side-by-side Model. Comparisons are made for anonymized hospitals and are primarily on quality measures.

Orthopedics – General, Orthopedics – Hand, Orthopedics - Hip/Knee, Orthopedics - Shoulder/Elbow, Orthopedics – Spine, Orthopedics – Sports Medicine, Pediatrics, Pulmonology, Rheumatology, and Urology

Exhibit 2. Distribution of quality and cost measures used in models

Exhibit 5. Illustration of conditional model

Exhibit 6. Illustration of stochastic frontier model

Exhibit 7. Correlation between efficiency scores generated from alternative

2 models linking cost and quality indicators

Model	Quality Cost		Unconditional	Unconditional	Conditional
	hurdle	hurdle	(70% quality)	(30% quality)	
Quality hurdle	-	-	-	-	-
Cost hurdle	0.1003	-	-	-	-
Unconditional (70% quality)	0.3196	0.8055	-	-	-
Unconditional (30% quality)	0.7802	0.2590	0.6610	-	-
Conditional	0.2122	0.7591	0.8906	0.5118	-
Frontier	0.0718	0.8745	0.9492	0.3992	0.8753

Exhibit 8. Hypothetical example of cost per beneficiary and total quality scores

2 for sample hospitals (positive correlation)

Exhibit 9. Hypothetical example of cost per Beneficiary and quality scores for

2 modified sample (negative correlation)

- -

Exhibit 10. Illustrative efficiency value system

			10	**	**	***	***	****	****	****	****	****	****
	н		9	*	**	***	***	****	****	****	****	****	****
	i		8	*	**	**	***	***	****	****	****	****	****
	g		7	*	**	**	**	***	***	****	****	****	****
Efficier	icy e		6	*	*	**	**	***	***	****	****	****	****
Score	r r		5	*	*	**	**	***	***	****	****	****	****
	Е		4	*	*	**	**	***	***	****	****	****	****
	f		3	*	*	*	**	**	***	***	****	****	****
	f		2	*	*	*	**	**	**	***	***	****	****
			1	*	*	*	*	**	**	***	***	****	****
				1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	91-100
													\rightarrow
								Higher	Quality				
							То	tal Qua	alitv Sc	ore	1	1	
Legend * =	1 Star E	fficie	ency Rating	g (Lowe	st Ratir	ng)							
** = 2 Star Efficiency Rating													
*** = 3 Star Efficiency Rating													
**** =	= 4 Star E	Efficie	ency Ratin	g									
*****	= 5 Star I	fficia		- /11:									
	- J Jtar i		ency Ratin	g (High	est Rat	ing)							

1 **Exhibit 11.** Adjusting the total quality score for efficiency^{xii}

2

		Total Quality Score										
		1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	91-100	
	1	-2 pts	-2 pts	-2 pts	-2 pts	-1 pt	-1 pt	0 pts	0 pts	+ 1 pt	+1 pt	
	2	-2 pts	-2 pts	-2 pts	-1 pt	-1 pt	-1 pt	0 pts	0 pts	+ 1 pt	+2 pts	
	3	-2 pts	-2 pts	-2 pts	-1 pt	-1 pt	0 pts	0 pts	+ 1 pt	+ 1 pt	+2 pts	
	4	-2 pts	-2 pts	-1 pt	-1 pt	0 pts	0 pts	+ 1 pt	+ 1 pt	+ 1 pt	+2 pts	
Score	5	-2 pts	-2 pts	-1 pt	-1 pt	0 pts	0 pts	+ 1 pt	+ 1 pt	+2 pts	+2 pts	
Efficiency	6	-2 pts	-2 pts	-1 pt	-1 pt	0 pts	0 pts	+ 1 pt	+ 1 pt	+2 pts	+2 pts	
	7	-2 pts	-1 pt	-1 pt	-1 pt	0 pts	0 pts	+ 1 pt	+ 1 pt	+2 pts	+2 pts	
	8	-2 pts	-1 pt	-1 pt	0 pts	0 pts	+ 1 pt	+ 1 pt	+2 pts	+2 pts	+2 pts	
	9	-2 pts	-1 pt	0 pts	0 pts	+ 1 pt	+ 1 pt	+ 1 pt	+2 pts	+2 pts	+2 pts	
	10	-1 pt	-1 pt	0 pts	0 pts	+1 pt	+1 pt	+2 pts	+2 pts	+2 pts	+2 pts	

- 3
- 4

5 Summary Table

- 6 * = 1 Star Efficiency Rating (Lowest Rating) = Total Quality Score 2 pts
- 7 ** = 2 Star Efficiency Rating = Quality Points 1 pt
- 8 *** = 3 Star Efficiency Rating = Quality Points + 0 pts
- 9 **** = 4 Star Efficiency Rating = Quality Points + 1 pt
- 10 ***** = 5 Star Efficiency Rating (Highest Rating) = Total Quality Score + 2 pts
- 11
- . .
- 12
- 13

^{xii} It is also possible to construct a function that approximates the point assignments in Exhibit 11 (and by extension the star assignment in Exhibit 10) rather than make individual determinations of the point values that should be assigned to each cell. For example, the grid in Exhibit 10 represents a function where quality is weighted twice as much as efficiency in determining the point totals. The function is of the form: a*quality score + b*efficiency score + k ,with a max/min of +/- 2. If the max/min of +/-2 is removed, the highest point adjustments would be +/-3 rather than +/- 2.

Appendix A: Applications outside of health care that combine indicators of quality and cost

3

There are a number of efforts outside of health care that link measures of products' cost 4 5 and quality to measure "value." These include efforts by Consumer Reports to measure the 6 value of automobiles and US News and Weekly Report's rankings of the value of colleges. 7 Consumer Reports' 2014 rankings of the "Best and Worst Cars for the Money" assigns cars a 8 "value-score" based on the combination of a "road test score" (i.e., quality), a composite rated 9 on a 100 point scale, a predicted reliability score (assessing how well the car is likely to hold up given the reliability of recent models), and 5-year ownership costs. This value score is then 10 11 displayed alongside the car's price and the component factors comprising the value score 12 (ownership costs, road test score, and predicted reliability). The rankings also use a fudge factor to "not recommend" cars as a result of poor reliability. They are able to do this because the 13 14 ratings are concerned primarily with identifying highly recommended cars: it is therefore not 15 concerned about precise measurements of poor value, and instead focuses on precisely measuring the highest value cars. Value rankings are then displayed within classes of cars (e.g. 16 17 compact cars, midsized cars, luxury cars, small sport utility vehicles, midsized sport utility vehicles, etc.). See Appendix Exhibit 1 for how these data are displayed. The model used to 18 calculate value rankings is not specified. Consumer Reports' automobile value ratings have a 19 20 close analogue to efficiency-tiering in health care. These programs are frequently designed to 21 direct patients towards higher efficiency providers (through a "designation" program) rather 22 than directing patients away from lower efficiency providers and report efficiency for different 23 "classes" of physicians (i.e., different specialties).

US News and World Reports compiles a list of the highest value colleges and universities in their "Best Value Schools."⁷² To do this, they first assess school quality as a composite of the student selectivity, college graduation rates, assessment from peer institutions, faculty resources (i.e., class size), financial resources, and alumni giving. They then create a value score as the weighted combination of three factors: 1) 60% is for the ratio of quality to cost (including tuition, room and board, books, and other expenses), discounted according to the average

need-based scholarship; 2) an unspecified percentage is based on the percentage of students 1 2 who received need-based aid; 3) an unspecified percentage is based the percentage of total 3 costs that are discounted. Similar to Consumer Reports' automobile rankings, US News ranks the value of schools within different categories (e.g. national universities, regional universities, 4 national liberal arts colleges, and regional liberal arts colleges). When showing the rankings of 5 schools based on value, US News and World Reports displays some of the component parts 6 7 side-by-side (percentage of students receiving need-based grants and the average cost after receiving grants based on need), but not all of the parameters going into the value calculation 8 9 (see Appendix Exhibit 2). This model for combining quality and cost to measure value is similar 10 to the unconditional model with a large weight towards cost.

1 Appendix Exhibit 1. Screen shot from Consumer Reports 2014 "Best and Worst

2 Cars for the Money"

Make & model	Price	Val	ue score	Cost per mile	Test score	Predicted reliability
COMPACT/SUBCOMPACT C	ARS W	orse 0 0.	Average Be 5 1.0 1.5 2.	etter 0		
Toyota Prius Four*	\$29,230			\$0.47	79	0
Honda Fit (base)*	16,915			0.43	68	0
Scion xB	18,360			0.50	68	0
Volkswagen Golf (2.5)	20,565			0.53	85	•
Toyota Corolla LE Plus	20,652			0.48	72	•
Volkswagen Golf TDI (MT)	25,730			0.50	88	0
Honda Civic EX	21,605			0.50	71	•
Honda Civic Hybrid	25,140			0.48	66	•
Subaru Impreza Premium	21,345			0.55	82	•
Subaru Impreza Sport Premium	22,345			0.54	79	•
Hyundai Accent sedan GLS	16,050			0.49	65	•
Hyundai Elantra SE	19,410			0.52	80	0
Chevrolet Cruze LS (1.8L)	18,375			0.55	69	٠
Dodge Dart Limited (1.4T)	24,490			0.62	61	•
Volkswagen Beetle 2.5L (MT)	20,835		Í	0.52	60	•
MIDSIZED CARS						
Subaru Legacy 2.5i Premium	24,189			0.59	81	0
Mazda6 Sport	23,590			0.56	85	•
Honda Accord LX (4-cyl.)	23,270			0.54	90	0
Hyundai Sonata GLS (2.4L)	21,800			0.55	89	0
Volkswagen Passat TDI SE	28,665			0.54	80	0
Kia Optima LX (2.4L)	21,885			0.59	81	0
Chevrolet Malibu 1LT (2.5L)	26,030			0.60	84	0
Chrysler 200 Limited (V6)	27,825			0.69	52	0
Nissan Altima 3.5 SL	31,610			0.70	84	•
LARGE CARS						
Toyota Avalon Hybrid Limited	42,501			0.69	86	•
Toyota Avalon Limited (V6)	40,670			0.79	85	0
Nissan Maxima 3.5 SV	33,700			0.77	83	•
Hyundai Azera	37,185			0.79	81	0
Buick LaCrosse (Leather, eAssist)	34,935			0.72	78	\cap
ource: http://www.co	nsumer	rec	orts.or	g/cro/2	2012	/05/best

- 1 Appendix Exhibit 2. Screen shot from US News and World Reports 2014 "Best
- 2 Value Schools"

AHONA	LIBERAL ARTS COLL	LOCO REGIONAL UNIVE	NOTICO NEOLAND COLLEGES
ank	School	Percent receiving need-based grants	Average cost after receiving grants based on need
#1	Harvard University Cambridge, MA	59.5%	\$15,486
#2	Yale University New Haven, CT	54.0%	\$16,205
#3	Princeton University Princeton, NJ	58.9%	\$17,614
#4	Stanford University Stanford, CA	49.7%	\$18,593
#5	Massachusetts Institute of Technology Cambridge, MA	57.7%	\$19,957
#6	Columbia University New York, NY	49.9%	\$20,435
#7	California Institute of Technology Pasadena, CA	52.4%	\$21,551

- 17 Source: <u>http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/national-</u>
- 18 <u>universities/best-value/spp+50</u>
- 19
- 20

1 References

- 2 1. Crawford S. Linking cost and quality expert panel orientation. Paper presented at: NQF 2014.
- Cutler DM. Where are the health care entrepreneurs? The failure of organizational innovation in
 health care. In: Lerner J, Stern S, eds. *Innovation Policy and the Economy*. Vol 11. Chicago:
 University of Chicago Press; 2011:1-28.
- 6 3. The watch on the job. *New England Journal of Medicine*. 1969;281(14):792-793.
- Thornton TN, Leonard RC. Experimental comparison of effectiveness and efficiency of three
 nursing approaches. *Nursing Research.* 1964;13:122-125.
- Hussey PS, de Vries H, Romley J, et al. A systematic review of health care efficiency measures.
 Health Services Research. 2009;44(3):784-805.
- National Quality Measures Clearinghouse. Varieties of measures in NQMC. *Tutorials on Quality Measures* http://www.qualitymeasures.ahrq.gov/tutorial/varieties.aspx. Accessed 04/14/2014.
- Korenstein D, Falk R, Howell E, Bishop T, Keyhani S. Overuse of health care services in the United
 States: An understudied problem. *Archives of Internal Medicine*. 2012;172(2):171-178.
- Burke LA, Ryan AM. The complex relationship between cost and quality in US health care. *The Virtual Mentor.* 2014;16(2):124-130.
- Doyle JJ, Graves JA, Gruber J, Kleiner S. Do high-cost hospitals deliver better care? Evidence from
 ambulance referral patterns. www.nber.org March 2012.
- Fisher ES, Wennberg DE, Stukel TA, Gottlieb DJ, Lucas FL, Pinder EL. The implications of regional
 variations in Medicare spending. Part 1: the content, quality, and accessibility of care. *Annals of Internal Medicine*. 2003;138(4):273-287.
- Silber JH, Kaestner R, Even-Shoshan O, Wang Y, Bressler LJ. Aggressive treatment style and surgical outcomes. *Health Services Research*. 2010;45(6 Pt 2):1872-1892.
- Kaestner R, Silber J. Evidence on the Efficacy of Inpatient Spending on Medicare Patients.
 Millbank Quarterly. 2010; 88(4):560-594.
- Gao J, Moran E, Almenoff PL, Render ML, Campbell J, Jha AK. Variations in efficiency and the
 relationship to quality of care in the veterans health system. *Health Affairs (Millwood)*.
 2011;30(4):655-663.
- 14. NQF. *Measurement framework: Evaluating efficiency across patient-focused episodes of care.* Washington D.C.: NQF;2009.
- 15. Institute of Medicine. *Crossing the quality chasm: The IOM health care quality initiative.*Washington, D.C.: Institute of Medicine;2001.
- Casalino LP, Nicholson S, Gans DN, Hammons T, Morra D, Karrison T, Levinson W. What does it
 cost physician practices to interact with health insurance plans? *Health Affairs (Millwood).* 2009;
 28(4):w533-543.
- 36 17. Sood N, Ghosh A, Escarse J. *The effect of health care cost growth on the U.S. economy*. United
 37 States Department of Health, 2007.
- Leatherman S, Berwick D, Iles D, Lewin L, Davidoff F, Nolan T, Bisognano M. The business case
 for quality: case studies and an analysis. *Health Affairs (Millwood)*. 2003;22(2):17-30.
- 40 19. Ryan AM. Effects of the Premier Hospital Quality Incentive Demonstration on Medicare patient
 41 mortality and cost. *Health Services Research.* 2009;44(3):821-842.
- 42 20. Robinson JC. The end of managed care. *Journal of the American Medical Association*.
 43 2001;285(20):2622-2628.
- VanLare JM, Blum JD, Conway PH. Linking performance with payment: implementing the
 Physician Value-Based Payment Modifier. *Journal of the American Medical Association.*2012;308(20):2089-2090.

1 2	22.	Ryan A, Blustein J. Making the best of hospital pay for performance. <i>The New England Journal of Medicine</i> , 2012:366(17):1557-1559.
3	23	Rvan AM. Damberg CL. What can the past of pay-for-performance tell us about the future of
4	_0.	Value-Based Purchasing in Medicare? <i>Healthcare</i> . 2013:1(1-2):42-49.
5	24.	Fisher ES. McClellan MB. Safran DG. Building the path to accountable care. New England Journal
6		of Medicine. 2011:365(26):2445-2447.
7	25.	Variation in Health Care Spending: Target Decision Making, Not Geography. The National
8		Academies Press; 2013.
9	26.	Robinson JC. Hospital tiers in health insurance: Balancing consumer choice with financial
10		incentives. <i>Health Affairs (Millwood)</i> . 2003;Suppl Web Exclusives:W3-135-146.
11	27.	Obamacarefacts.com. Types of Health Insurance Plans. 2014;
12		http://obamacarefacts.com/insurance-exchange/health-insurance-plans.php Accessed April 14,
13		2014, 2014.
14	28.	Wall JK. Amid Obamacare's changes, WellPoint keeps old playbook. The Dose. July 25, 2013
15		www.ibj.com: Indianapolis Business Journal; 2013.
16	29.	Robinson JC, Brown TT. Increases in consumer cost sharing redirect patient volumes and reduce
17		hospital prices for orthopedic surgery. <i>Health Affairs (Millwood)</i> . 2013;32(8):1392-1397.
18	30.	Sennett C, Starkey K. Measuring and improving efficiency in Health Care: Report from an ABIM
19		foundation/IOM meeting. Philadelphia: ABIM Foundation;2006.
20	31.	Krumholz HM, Keenan PS, Brush JE, Jr., et al. Standards for measures used for public reporting of
21		efficiency in health care: A scientific statement from the American Heart Association
22		Interdisciplinary Council on Quality of Care and Outcomes Research and the American College of
23		Cardiology Foundation. Circulation. 2008;118(18):1885-1893.
24	32.	Timbie JW, Normand SL. A comparison of methods for combining quality and efficiency
25		performance measures: Profiling the value of hospital care following acute myocardial
26		infarction. Statistics in Medicine. 2008;27(9):1351-1370.
27	33.	Tompkins CP, Higgins AR, Ritter GA. Measuring outcomes and efficiency in Medicare Value-
28		Based Purchasing. Health Affairs (Millwood). 2009;28(2):w251-261.
29	34.	Kessler D, McClellan M. The effects of hospital ownership on medical productivity. Cambridge,
30		MA: National Bureau of Economic Research;2001.
31	35.	Hollingsworth B. The measurement of efficiency and productivity of health care delivery. <i>Health</i>
32		Economics. 2008;17(10):1107-1128.
33	36.	Rosko MD. Measuring technical efficiency in health care organizations. Journal of Medical
34		Systems. 1990;14(5):307-322.
35	37.	Meltzer DO, Chung JW. The population value of quality indicator reporting: A framework for
36		prioritizing health care performance measures. <i>Health Affairs (Millwood)</i> . 2014;33(1):132-139.
37	38.	Berenson RA. Moving payment from volume to value: What role for performance measurement?
38		Urban Institute;2010.
39	39.	Massachusetts Division of Health Care Finance and Policy. Massachusetts health care cost
40		trends: Price variation in health care services. Boston, MA 2011.
41	40.	The Leapfrog Group. Survival predictor (surgical mortality). Washington D.C.: Academy Health;
42		
43	41.	Krumnoiz Hivi, Wang Y, Mattera JA, Wang Y, Han LF, Ingber MJ, Roman S, Normand SL. An
44		administrative claims model suitable for profiling hospital performance based on 30-day
45		mortailly rates among patients with an acute myocardial infarction. <i>Circulation</i> .
46		2006;113(13):1683-1692.

1 42. Burack JH, Impellizzeri P, Homel P, Cunningham JN. Public reporting of surgical mortality: A 2 survey of New York State cardiothoracic surgeons. Annals of Thoracic Surgery. 1999;68(4):1195-3 1200. 4 43. Silber JH, Rosenbaum PR, Ross RN, Ludwig JM, Wang W, Niknam BA, Mukherjee N, Saynisch PA, 5 Even-Shoshan O, Kelz RR, Fleisher LA. Template matching for auditing hospital cost and quality. 6 Health Services Research. 2014; epub ahead of print. 7 Hibbard J, Sofaer S. Best practices in public reporting No. 1: How to effectively present health 44. 8 care performance data to consumers. Rockville, MD: Agency for Healthcare Research and 9 Quality; May 2010. 10 45. NQF. Composite performance measure evaluation guidance. Washington, DC: NQF;2013. 11 46. Aetna. Aexcel performance network designation measurement methodology. Aetna;2014. 12 47. Blue Cross Blue Shield Association. Blue Distinction Centers: An overview. 13 http://www.bcbs.com/why-bcbs/blue-distinction/. Accessed 04/24/2014. 14 Blue Cross Blue Shield Association. Blue Distinction Specialty Care Program: 2013 Program 48. 15 selection criteria for Blue Distinction Centers for cardiac care. 16 http://www.bcbs.com/healthcare-partners/blue-distinction-for-17 providers/cardiacprogramcriteria.pdf. Accessed 04/24/2014. 18 49. Blue Cross Blue Shield Association. Blue Distinction Specialty Care Program: 2011-2012 Program 19 selection criteria for Blue Distinction Centers for spine surgery and Blue Distinction Centers for 20 knee and hip replacement. http://www.bcbs.com/healthcare-partners/blue-distinction-for-21 providers/BDC SpineKneeHip Selection Criteria.pdf. Accessed 04/24/2014. 22 Bailit M, Hughes C, Burns M, Freedman DH. Share-savings payment arrangements in health care: 50. 23 Six case studies. New York, NY: The Commonwealth Fund;2012. 24 51. Blue Cross Blue Shield of Michigan. 2014 Hospital pay-for-performance program: Peer groups 1-25 4. Michigan2014. 26 52. Blue Cross Blue Shield of Massachusetts: The Alternative Quality Contract. Blue Cross Blue Shield 27 of Massachusettes; May 2010 2010. 28 53. Chernew ME, Mechanic RE, Landon BE, Safran DG. Private-payer innovation in Massachusetts: 29 The 'Alternative Quality Contract'. *Health Affairs (Millwood)*. 2011;30(1):51-61. 30 54. Song Z, Safran DG, Landon BE, He Y, Mechanic RE, Day MP, Chernew ME. The 'Alternative 31 Quality Contract,' based on a global budget, lowered medical spending and improved quality-32 Supplemental Materials. Health Affairs (Millwood). 2012;31(8):1885-1894. 33 Christianson JB, Feldman R. Evolution in the Buyers Health Care Action Group purchasing 55. 34 initiative. Health Affairs (Millwood). 2002;21(1):76-88. 35 56. Lyles A, Weiner JP, Shore AD, Christianson J, Solberg LI, Drury P. Cost and quality trends in direct 36 contracting arrangements. *Health Affairs (Millwood)*. 2002;21(1):89-102. 37 57. Cigna. Cigna care designation and physician quality and cost-efficiency displays: 2013 38 Methodologies Whitepaper. Cigna;2013. 39 58. Cigna. Collaborative accountable care: CIGNA's approach to Accountable Care Organizations. 40 Cigna;2011. 41 59. HealthPartners. Cost and quality ratings: Medical group and hospital ratings. 2014; 42 https://www.healthpartners.com/public/cost-and-quality/index.html. Accessed April 14, 2014. 43 60. The Agency for Healthcare Research and Quality, The Employer Health Care Alliance 44 Cooperative. Efficiency in health care: What does it mean? How is it measured? How can it be 45 used for Value-Based Purchasing? 2006; Madison, WI. 46 61. Carroll J. Early Tiered networks encounter many obstacles. Managed Care: MediMedia Managed 47 Markets; 2007.

1 62. Alteras T, Silow-Carroll S. Value-driven health care purchasing: Case study of the Massachusetts 2 Group Insurance Commission. The Commonwealth Fund;2007. 3 63. Sinaiko AD, Rosenthal MB. The impact of tiered physician networks on patient choices. Health 4 Services Research. 2014: epub ahead of print. 5 64. RTI International. Accountable care organization 2013 program analysis: Quality performance 6 standards narrative measure specifications. Baltimore, MD: Centers for Medicare & Medicaid 7 Services;2012. 8 65. NCQA. Relative Resource Use. 2014; http://www.ncqa.org/tabid/1231/default.aspx. Accessed 9 04/14/2014, 2014. 10 66. Tufts Health Plan Blue Ribbon Value Methodology- Summary. Tufts Health Plan;2006. UnitedHealthCare. UnitedHealth Premium Physician Designation Program: Summary 11 67. 12 methodology. UnitedHealthCare;2014. 13 UnitedHealthCare. UnitedHealth Premium Physician Designation Program: Detailed 68. 14 Methodology. 2014. 15 69. United Healthcare Online. Premium Methodology. 16 https://www.unitedhealthcareonline.com/b2c/CmaAction.do?channelld=45dff1ab39f24210Vgn 17 VCM10000b640dd0a . Accessed 04/24/2014. 18 70. Virginia Cardiac Surgery Quality Initiative. 2014; http://www.vcsqi.org. 19 Speir AM, Kasirajan V, Barnett SD, Fonner E. Additive costs of postoperative complications for 71. 20 isolated coronary artery bypass grafting patients in Virginia. The Annals of Thoracic Surgery. 21 2009;88(1):40-46. 22 Morse R. Best value schools methodology. US News and World Report2013. 72. 23 http://www.usnews.com/education/best-colleges/articles/2013/09/09/best-value-schools-24 methodology