- 1
- 2

3 Linking quality and cost indicators to measure

- ⁴ efficiency in health care (Version 3)
- A paper commissioned by the National Quality Forum
 Andrew M. Ryan, Ph.D.
 Christopher P. Tompkins, Ph.D.
- 11 June 16, 2014
- 12

13 Acknowledgements

- 14 The authors would like to acknowledge the staff at the National Quality Forum, particularly
- 15 Ashlie Wilbon, Taroon Amin, and Erin O'Rourke, for their contributions and assistance with this
- 16 project. We would also like to acknowledge the outstanding contributions of the expert panel,
- 17 particularly Joyce Dubow and Carole Flamm, the panel co-chairs. We would also like to
- 18 acknowledge the research assistance of Jayme Mendelsohn.

Contents

Purpose of the commissioned paper	iii
Key definitions	v
Section 1. Why combining quality and cost measures to measure efficiency in health	1
care matters	
Section 2. Options for combining quality and cost measures	4
Section 3. Illustration of models to combine indicators of cost and quality	9
Section 4. Summary of findings from environmental scan	15
Section 5. Combining indicators of quality and cost for different use cases	19
Section 6. Implications for the National Quality Forum measure endorsement process	22
Exhibits	27
Appendix A: Applications outside of health care that combine indicators of quality and cost	45
References	49

21 **Purpose of the commissioned paper**

The National Quality Forum has commissioned a paper to assess alternative approaches 22 23 to link – or combine – measures of quality and cost for the purpose of measuring efficiency in health care. This paper reviews various approaches—both established and novel— to measure 24 efficiency. These include composite measures and approaches that keep the quality and cost 25 domains separate when assessing efficiency. The paper also considers the implications of 26 alternative methods for profiling and scoring providers based on their measured efficiency. In 27 addition to assessing the technical issues related to measuring and profiling efficiency, we will 28 29 consider the implications for using alternative approaches in the context of various programs, such as the creation of tiered insurance networks and value-based payment. 30 Our goal in writing the commissioned paper is to help build consensus about the key 31 considerations and appropriateness of alternative approaches for combining quality and cost 32 measures into quantitative measures of efficiency. This paper will serve as a foundation to 33 inform the deliberations of a multi-stakeholder expert panel that will provide input on the 34 methodological challenges to linking cost and quality measures and the best practices for 35 combining cost and quality measures to assess efficiency of care.¹ 36 37 A substantial literature has also been devoted to understanding and measuring efficiency in health care.² While questions of efficiency in health care have been of interest for 38 decades,^{3,4} this interest has accelerated in recent years.⁵ However, as identified by a recent 39

41 absent from this literature.⁵ Instead, researchers have evaluated economic efficiency using a

40

4

systematic review commissioned by AHRQ, considerations of quality of care have been largely

variety of techniques to understand how a given output (e.g. a hospital day) can be optimized
for a given set of health care inputs (e.g. physician labor, nurse labor). While the study of
economic efficiency in health care is of great importance, it is not the focus of this paper.

In this paper, we seek to evaluate the specific case in which cost, borne by the payer 45 (either the patient or the purchaser), is the input of interest and quality of care is the output of 46 interest.¹ As such, we are interested in the assessment of efficiency only through the joint 47 consideration of cost and quality. We will not consider approaches to the measurement of 48 49 efficiency- such as brand prescribing rates or rates of MRI for patients with back pain - that seek to identify relative resource use and appropriateness.⁶ Measuring inappropriate resource 50 use, or "waste", clearly has value but represents an overly narrow interpretation of efficiency.⁶ 51 52 The use of health care services that are never clinically indicated are very limited and account for a small amount of health care spending.⁷ For this reason, focusing simply on reducing 53 "wasteful" resource use is unlikely to substantially reduce health care spending, or increase 54 55 efficiency. There is also a large literature concerned with the relationship between costs and guality,⁸⁻¹¹ and a smaller literature on relationship between economic efficiency and guality.¹² 56 While relevant to the concept of efficiency that we seek to understand, this literature is not 57 58 primarily concerned with profiling individual providers on the basis of efficiency.

¹ While non-financial costs borne by patients (e.g. opportunity costs and travel costs associated with treatment), and administrative costs borne by providers when interacting with payers are important, consideration of these costs is beyond the scope of current efforts to profile the efficiency of health care providers.

60 Key Definitions

61	This project will reference a number of common terms that may have different connotations
62	for different audiences. Throughout this project, we will apply a modified version of the
63	definitions from the National Quality Forum's Patient-Focused Episodes of Care project: ¹³
64	Quality of care: the degree to which health services for individuals and populations
65	increase the likelihood of desired health and patient experience outcomes and are
66	consistent with professional knowledge ¹⁴
67	Cost of care: measures total health care spending, including total resource use and unit
68	price(s), by payor or consumer, for a health care service or group of health care services
69	associated with a specified patient population, time period, and unit(s) of clinical
70	accountability.
71	Efficiency of care: measures the cost of care associated with a specified level of quality
72	of care. "Efficiency of care" is a measure of the relationship of the cost of care
73	associated with a specific level of performance measured with respect to the other six
74	IOM aims of quality.
75	Value of care: measures a specified stakeholder's (such as an individual patient's,
76	consumer organization's, payor's, provider's, government's, or society's) preference-
77	weighted assessment of a particular combination of quality and cost of care
78	performance.
79	As used in this project, the terms efficiency and value correspond to the respective definitions

80 adopted previously by NQF and other stakeholders. Using these definitions, efficiency can be

assessed objectively. By profiling providers' quality, cost, and efficiency, and showing the 81 82 component pieces, it is reasonable to assume that efficiency can be measured and displayed in a way that allows stakeholders to consider "value" as a preference-weighted assessment of the 83 component pieces; i.e., quality, cost, and efficiency. For example, one approach might 84 determine a provider to be "high quality," while also "high cost," based on its performance in 85 relation to averages in both dimensions. An alternate approach is to insert an intermediate 86 87 step of measuring efficiency. This might conclude that the provider is "high quality," but 88 actually "low cost" when measured only against providers with similarly high quality, and 89 therefore has high efficiency. Stakeholders can make value inferences in either case. The 90 intermediate step serves to clarify the process by making explicit the objective relationships 91 between quality and cost from which general and specific subjectively-weighted inferences are 92 made regarding value.

94 Section 1. Why combining quality and cost measures to measure

95 efficiency in health care matters

Improving the efficiency of health care delivery in the United States is critical. Recent
attempts at payment reform, such as pay-for-performance and public quality reporting, have
failed to reduce cost growth.^{15,16} By focusing primarily on quality measures of underuse – such
as non-adherence with evidence-based care – these programs have not provided direct
incentives for increased efficiency. Previous efforts to reign in cost growth through managed
care, such as capitated payment and utilization review, focused primarily on reducing costs
rather than improving quality of care.¹⁷

103 To address these shortcomings, the Patient Protection and Affordable Care Act created numerous initiatives that are intended to improve the *efficiency* of US health care –not quality 104 or cost alone. These initiatives include the Physician Value-Based Payment Modifier.¹⁸ Hospital 105 Value-Based Purchasing,¹⁹ The Medicare Advantage Quality Bonus Program,²⁰ Accountable Care 106 Organization programs,²¹ and the End-Stage Renal Disease pay-for-performance program. More 107 108 directly, legislation was introduced in 2009 to replace the standard update to physician payments with a geographically based "value index," which would adjust payments to 109 physicians according to their relative quality and cost.²² 110 111 On the private side, a number of insurers have developed products with tiered networks

112 that are based on measures of efficiency. These products are structured to increase patient

113 cost-sharing for using providers that are designated in a lower-efficiency tier. The first

114 generation of these programs established tiers based almost exclusively on costs.²³ However,

115	insurers have developed a range of increasingly sophisticated approaches to combine indicators
116	of cost and quality to categorize the efficiency of providers. These efforts are related to the rise
117	of high-deductible health plans and consumerism. Patients need both quality and cost
118	information in order to make informed choices about the services they need and the providers
119	they should use. In addition, given the price sensitivity to plans currently sold in insurance
120	exchanges created through the ACA, ²⁴ insures may adopt narrower networks in order to
121	compete on price. ²⁵ This will likely increase insurers' use of tiered networks based on measures
122	of provider value. Other promising private sector efforts, such as reference pricing, ²⁶ will likely
123	need to explicitly integrate provider quality measurement to gain greater acceptance.
124	These reforms require both quality and cost performance to be measured and assessed
125	together. These ongoing initiatives share a common set of goals: 1) To better identify high and
126	low efficiency providers and 2) To foster incentives for providers to improve efficiency. Broader
127	efforts to better identify the relative value of health care services are related, but rely on a
128	different set of tools and policy measures. While cost effectiveness and comparative
129	effectiveness research seeks to understand the relative cost and effectiveness of medical
130	treatments, efficiency profiling seeks to understand the relative efficiency of health care

However, the desire to use efficiency measures has outpaced scientific consensus about how best to incorporate these measures into accountability efforts. As shown in section 2 of this paper, this lack of consensus for combining cost and quality measures can be seen by the disparate use of measures of efficiency across the public programs. Also, while many of the

private payer efforts to combine quality and cost have similar features, they differ in importantways.

138 Efforts are moving ahead to measure and profile health care providers' efficiency without a clear sense of the best approach to do so. The issues surrounding combining quality 139 140 and cost measures are certainly challenging: one recent report described the state of efficiency measurement as "woefully inadequate."²⁷ Two high profile efforts tasked with grappling with 141 these issues failed to recommend a strategy to do so.²⁸ Now is the time to develop a framework 142 143 to identify the trade-offs between alternative approaches to combine quality and cost indicators in order to guide the future development, evaluation, and use of efficiency 144 145 measurement in health care.

147 Section 2. Options for combining quality and cost measures

148 Methods for environmental scan

149	We performed an environmental scan to identify existing approaches that were
150	currently in use by Medicare, private payers, and other program sponsors that combine
151	indicators of quality and cost measures to assess efficiency. We also identified novel
152	approaches that link quality and cost indicators that are not currently in use by a program
153	sponsor but have been developed by researchers. To be included, an approach must assess cost
154	as an input and one or more measures of quality as the output.
155	We searched the PubMed databases for published articles in the English language that
156	appeared in journals between January 1990 and April 2014. Search terms included "quality",
157	"measuring," and "cost." We searched the bibliographies of retrieved articles looking for
158	additional relevant publications. We then searched Google Scholar, the Cochrane Database,
159	and conducted other general internet searches for the same search terms. This provided
160	resources that were not limited to peer-reviewed journals. We also identified applications
161	outside of health care that combine indicators of quality and cost (e.g. Consumer Reports "Best
162	and Worst Cars for the Money" and US News and World Reports "Best Value Schools"). See
163	Appendix A for information on these efforts.
164	Additionally, we solicited information from the National Quality Forum's Expert Panel on
165	Linking Cost and Quality. The materials referred to us by the expert panel frequently led to the
166	discovery of additional approaches. From the panel, we also obtained detailed information on

167 approaches that we knew had been initiated (for instance, in Medicare).

168	After identifying all of the programs that simultaneously assessed quality and cost, as
169	well as approaches proposed by researchers, we identified and described a set of mutually
170	exclusive approaches that combine quality and cost measures to measure efficiency. We then
171	described the basic features of these approaches. Next, we identified the programs that have
172	used quality and cost indicators to profile the efficiency of providers. This includes programs
173	that are currently running as well as those that are now defunct. For these programs, we
174	obtained information on several parameters: the name of the program, the services evaluated
175	(e.g. hospital only, physician only, all services), the level of attribution (e.g. hospital, physician
176	practice, individual physician), the specification of quality, the specification of cost, and the
177	approach used to combine quality and cost indicators.
178	Approaches used to combine quality and cost measures
179	We identified seven approaches that are currently in use or have been proposed by
180	researchers to combine quality and cost indicators to measure efficiency.
181	The conditional model: This approach, described by Timbie and Normand as the
182	"Univariate" approach ²⁹ and by Tompkins et al. as the "Net-Incentive Payment Model" ³⁰
183	assesses efficiency as the conditional combination of quality and cost. The approach
184	proceeds in four steps: first quality is assessed either by a single indicator or by a
185	composite measure; second cost is assessed, typically by a single measure of total costs;
186	third, either or both of the quality and cost domains are classified into performance groups
187	– frequently as "low", "average", or "high" – using specified criteria; fourth, the quality and
188	cost classifications are combined to assess efficiency. A common approach is to define high
189	efficiency providers as those that are classified as both high quality and low cost.

Alternatively, the Net-Incentive Payment Model assesses the difference in costs between
 providers within the same quality grouping. The Conditional Model is widely used by
 private payers to create tiers of providers based on their efficiency.

193 **The Quality Hurdle Model and Cost Hurdle Model**: A variation on the Conditional Model is

the Quality Hurdle Model. This model follows the first three steps of the Conditional Model.

195 Then, providers are subject to a minimum quality standard, the hurdle, before their cost

196 performance is assessed. After meeting this minimum quality standard, providers may be

- 197 judged on cost performance alone or may be evaluated based on their combination of
- 198 quality and cost performance. A variation on the Quality Hurdle Model is the Cost Hurdle

199 Model. Here, providers are evaluated on quality performance only after meeting a cost

standard, which is typically defined as having costs that are below a specified growth rate.

201 Hurdle Models are commonly used for shared savings programs.

202 **The Unconditional Model**. The unconditional model follows the first two steps of the

203 Conditional Model. Then, the quality and cost domains are assigned weights and combined

204 into a single metric. Thus, in the Unconditional Model, quality and cost are scored

205 independently and then combined. This is the model currently used by Hospital Value-

206 Based Purchasing.

The Regression Model: The regression model, proposed by Timbie and Normand,²⁹ profiles provider quality while conditioning on cost. While it is conceptually similar to the Conditional Model, it has the advantage of using regression analysis to account for the within-provider correlation between quality and cost outcomes. In contrast, the approach

taken by the Conditional Model does not account for any correlation between the qualityand cost domains. The regression model is not currently used by any program sponsor.

The cost-effectiveness model: The cost-effectiveness model, proposed by Timbie and 213 Normand,²⁹ differs from the other approaches in that it assigns a dollar value to the patient 214 215 benefits accrued from quality domain. By doing so, this approach can dramatically change efficiency profiles. For instance, using the Unconditional or Conditional Model, a hospital 216 with excellent mortality outcomes may be classified as having only moderate efficiency if it 217 218 also has high costs. However, if the benefit of increased survival is appropriately valued and the absolute cost differences between this hospital and others are not great, this high 219 220 cost hospital may in fact have excellent efficiency: it is producing desirable health outputs 221 at a lower cost than other hospitals. A similar approach towards efficiency measurement was developed by Kessler and McClellan to evaluate the cost-effectiveness not of 222 individual providers, but of the characteristics of hospitals.³¹ 223

224 The Data Envelopment Analysis or Stochastic Frontier Analysis Model: This approach is used to identify the efficient production of quality across all observed levels of cost.^{32,33} 225 The efficient frontier is modeled and providers' efficiency can then be evaluated based on 226 227 their distance from the efficient frontier. One of the key advantages of this approach is that it allows efficiency to be evaluated across continuous measures of cost and quality. It 228 229 therefore does not require classification of providers into categories based on what may be 230 arbitrary threshold values, a shortcoming of other approaches. This approach has been widely used in academic research to assess economic efficiency in health care, although 231 almost exclusively in cases in which the output of interest is something other than quality 232

of care.¹² This approach is not currently used by any program sponsors to evaluate
provider efficiency.

The Side-by-Side Model: This approach does not combine the quality and cost domains in 235 any way. It follows the first two steps of the Conditional Model, then concludes by 236 237 displaying the results in summary form. This model typically emphasizes the clear and intuitive display of indicators of quality and cost (e.g. star ratings). However, by leaving the 238 specific combination of cost and quality unspecified when assessing efficiency, this model 239 240 leads directly to value estimations by stakeholders. *Programs using cost and quality measures to assess efficiency* 241 Exhibit 1 describes identified programs that link indicators of cost and quality to 242 measure efficiency. We describe the characteristics of 24 programs for which we were able to 243 244 obtain sufficiently complete information. Of these programs, 11 profiled physicians or physician practices, 4 profiled hospitals, 3 245 profiled both physicians and hospitals, and 6 profiled health systems or health plans. To 246 247 combine quality and cost indicators, 4 of the identified approaches used the Conditional Model, 5 used the Unconditional Model, 5 used the Side-by-Side Model, and 8 used the Quality Hurdle 248 or Cost Hurdle Model.² The method used to combine quality and cost indicators was unclear for 249

250 2 programs.

² While Veterans Affairs hospitals use stochastic frontier analysis to profile the efficiency of hospitals, assessment of efficiency does not consider quality of care as an output.

251 Section 3. Illustration of models to combine indicators of cost and

252 quality

253 We illustrated the implementation of several of the models to combine quality and cost 254 measures to provide a clearer idea about their similarities and differences. To do this, we downloaded data on hospital cost and quality from the May 2, 2014 release of Hospital 255 Compare (www.medicare.gov/hospitalcompare). Our measure of cost is Medicare Spending per 256 Beneficiary (MSPB), an NQF endorsed measure (NQF #2158). The measure captures price-257 adjusted Medicare spending for all services (inpatient, outpatient, home health, hospice, skilled 258 259 nursing, and durable medical equipment) for acute care hospitals for all admissions in the 3 days prior to admission and 30 days after discharge. We specified cost using the ratio of the 260 261 national total spending per episode to individual hospitals' total hospital spending per episode. 262 A higher value indicates higher cost performance (i.e., lower cost relative to the national 263 average). The measure of quality is the Total Performance Score from Hospital Value-Based 264 265 Purchasing. The Total Performance Score is a composite measure capturing hospital quality 266 performance related to clinical process performance (45%), patient experience (30%), and outcome performance (25%). The measure incorporates both quality attainment and quality 267 268 improvement. Higher scores indicate higher quality performance.

269 We merged cost data from 3,260 acute care hospitals with quality data from 2,728 270 hospitals. Our analytic sample was 2,728 hospitals. Before combining indicators, we

standardized the quality and cost indicators by subtracting the mean and dividing by the 271 272 standard deviation. The distribution of the quality and cost measures are shown in Exhibit 2. We linked quality and cost measures to measure efficiency using the following models: 273 1. The unconditional model: The unconditional model linked quality and cost 274 measures through a weighted combination of measure scores. We calculated two 275 276 separate versions of the unconditional model, one using 70% quality and 30% cost, the other using 30% quality and 70% cost. 277 2. The conditional model: The conditional model linked quality and cost by assessing 278 cost performance for a given level of quality. We calculated two separate versions 279 280 of the conditional model that varied with respect to the precision of the quality groupings. The first version classified hospitals into terciles of quality performance 281 282 and then classified hospitals into cost tritiles: low (bottom 25%), average (middle 50%), and high (top 25%) cost performance. In the second version, hospitals were 283 classified into quality tritiles, and then classified into cost tritiles within each quality 284 tritile. In the second model, we assigned an efficiency score of "9" (the highest 285 score) for the top quality and top cost tritile, decreasing to "1" for the bottom 286 quality and bottom cost tritile. 287 3. The quality hurdle model: The quality hurdle model linked quality and cost 288 measures by setting the quality hurdle at the 25th percentile. Below the 25th 289 percentile of quality, hospitals received an efficiency score of 0. Above the 25th 290

291 percentile of quality, hospitals' efficiency was determined based on their cost292 performance.

- 293
 4. The cost hurdle model: The cost hurdle was similarly set at the 25th percentile.
 294 Below the 25th percentile of cost performance, hospitals received an efficiency
 295 score of 0. Above the 25th percentile of cost performance, hospitals' efficiency was
 296 determined based on their quality.
- 5. The stochastic frontier model: The stochastic frontier model linked quality and cost
 measures by estimating quality as a function of cost. Efficiency was then assessed
 based on hospitals' "technical efficiency", a measure of hospitals' distance from the
 frontier.

We did not illustrate the linking of cost and quality using the side-by-side model, because this model does not formally combine measures of cost and quality. We also did not link cost and quality measures using the regression model or the cost-effectiveness models because these models require patient-level data.

305 Exhibit 3 shows the hurdle models, Exhibit 4 shows the unconditional models, Exhibit 5 306 shows the conditional models, and Exhibit 6 shows the stochastic frontier model. For each of 307 these models, greater cost performance denotes lower cost. Hospitals toward the top right of 308 the scatter plot have higher efficiency while those toward the bottom left have lower efficiency. 309 The precise determination of efficiency depends on the model used to combine quality and cost 310 indicators.

311 **Exhibit 7** shows a correlation matrix between the efficiency scores generated from the 312 alternative models. It indicates a low to high degree of correlation between the efficiency scores generated from the different models. The quality hurdle model has a relatively weak 313 314 correlation with the other models (with the exception of the unconditional (30% quality) model 315 r=0.78). The cost hurdle model is most strongly correlated with the unconditional (70% quality) model (r=0.81), the conditional (r=0.76), and the frontier model (r=0.87). The unconditional 316 (70% quality) model is also highly correlated with the unconditional (30% quality) (r=0.66) and 317 318 the frontier model (r=0.95), while the conditional model is strongly correlated with the frontier 319 model (r=0.88). Together, this analysis indicates that the alternative approaches generate meaningfully different efficiency signals. This has important implications for efficiency profiling 320 321 using these models.

322 This analysis also gives a sense of some of the pros and cons of different methods for profiling. For instance, so long that quality performance does not re-enter efficiency profiles 323 324 after the hurdle is exceeded, the quality hurdle model places much greater emphasis on costs, rather than quality, when assessing efficiency. This can be seen by its correlation with the 325 326 unconditional model (30% quality). The opposite is true for the cost hurdle model. The analysis 327 also highlights that, while the creation of efficiency tiers is straightforward with the conditional 328 model, deriving nominal efficiency scores from the conditional model requires a separate 329 scoring system that assigns a value to conditional cost and quality performance. Tompkins and colleagues³⁰ propose one method to do this, but others are possible. 330

In the analysis of cost and quality data available on Hospital Compare, lower cost is
 associated with lower quality: a 1% increase in cost performance (lower costs) is associated

with a 0.19% decrease in quality performance (p<.01). Nonetheless, the analysis indicates that 333 334 it is possible for hospitals to have both excellent quality performance and excellent cost performance: there are a number of hospitals that are close to two standard deviations higher 335 than the mean for both quality and cost performance. In other circumstances, there may be 336 337 greater trade-offs between improving quality and increasing costs. In such cases, program sponsors should accommodate their expectations to the reality of cost and quality trade-offs. 338 To further illustrate this point, **Exhibit 8** shows the cost per beneficiary and quality 339 340 scores from a hypothetical sample of hospitals. The vertical axis is spending per beneficiary and 341 the horizontal axis is the hospital's total quality score. The quality scores are expressed here from 0 to 1, with 0 being the lowest quality and 1.00 being the highest. Contrary to the 342 343 specification of costs to illustrate the alternative models to combine quality and cost, in this 344 example, higher levels of cost indicate worse cost performance. A trend line has been fitted to

345 the data.

346 As can be seen from **Exhibit 8**, there is a slight positive correlation between cost and quality for these hospitals. This is not to say that cost and quality are slightly positively 347 348 correlated for all hospitals presently or that this relationship will continue in the future. As the health care system evolves and our ability to measure quality improves, cost and quality may 349 very well become negatively correlated. Moreover, the nature of the relationship between 350 351 resource requirements and quality may vary across dimensions of quality. For example, improving certain outcomes or adhering to best practices may result in greater resource 352 353 requirements, suggesting the positive correlation. Meanwhile, quality improvements in patient safety and medical errors may result in lower costs from complications and treatment failures, 354

resulting in a negative correlation between specified levels of quality (patient safety) and total
cost of care (including complications and additional services) (Exhibit 9). Similarly, more
extensive substitution of hospice and palliative care for higher-cost, marginally futile treatment
approaches may have corresponding improvements in patient experience.

After calculating objective efficiency based on principles and empirical calculations, a user could then determine what value to place on that efficiency score based on subjectivepreference weighting.

Exhibit 10 provides an illustrative example of how to value hospital performance under a star rating system. The Total Quality Score (horizontal axis) and the efficiency score (vertical axis) are used to assign the value scores (i.e., determine the number of stars). Note that the same efficiency score is valued differently depending on the total quality score: higher total quality results in a greater value (number of stars) for the same efficiency score. Such a star rating system might be suitable for public reporting.

Once the assessment (i.e. number of stars) of the hospital performance has been made, it could be quantified by adjusting a hospital's Total Quality Score (0 to 100 points) upwards or downwards depending on its efficiency rating. An illustrative example is provided in **Exhibit 11**.

371

372

```
373
```

Section 4. Summary of findings from environmental scan

Our environmental scan and illustration of alternative models for combining quality and 374 375 cost indicators highlights a number of key issues related to measuring efficiency in health care. First, there are numerous extant approaches and no clear consensus about best 376 practices. Of the 24 identified programs, we documented five broad approaches to combine 377 378 quality and cost indicators. There is considerable variation within these approaches. Many of 379 the quality measures included in the quality domains are exclusively measures that are endorsed by the National Quality Forum or by professional societies. The cost measures used to 380 381 assess efficiency, however, have generally not been endorsed by the National Quality Forum. 382 Interestingly, the measure sets used to assess quality for many of the approaches taken 383 by the private payers are more expansive than those used by the public payers. For instance, many of the private efficiency efforts profile specialist physicians, who have been largely 384 ignored by public programs. The purpose of efficiency measurement is also different in the 385 386 public and private efforts: the public efforts seek to use efficiency measurement to adjust 387 provider payments whereas the private efforts use efficiency measurement to create tiered networks or for shared-savings programs. 388 389 The alternative approaches used to combine cost and quality measures have a number 390 of pros and cons. The Conditional Model, the Unconditional Model, the Side-by-Side Model, and to a lesser extent the Hurdle Models all have the benefit of being relatively easy to 391

understand. (Many of the program sponsors emphasized the importance of transparency,

393 describing efficiency measurement in simple terms on their website but also publishing detailed

394 methodology reports.) However, these approaches suffer from two separate aggregation 395 problems that may undermine their validity. First, quality is almost always defined using 396 multiple measures, and some kind of weighting scheme is required to summarize the 397 performance of providers on these measures. The opportunity model, in which weights are 398 based on the number of patients that are eligible to receive a given measure, remains a 399 common approach to creating composite measures of quality. Another approach, used by the Alternative Quality Contract, assigns triple the weight to outcome measures relative to process 400 401 measures. Both of these approaches to weighting measures, however, are largely arbitrary. A 402 recent paper found that among 13 commonly used quality indicators, 7 of them accounted for 93% of the benefits to population health.³⁴ If weights assigned to individual performance 403 404 measures do not reflect their importance to the health of patients, weighting schemes will, at a minimum, obscure the signal between observed quality and patient health.³⁵ 405

Second, as previously described, efficiency measurement has the potential to reach erroneous conclusions about the relative efficiency of providers when the relationship between measured quality and patient health is not well defined. If quality is measured by patient survival, then small improvements have the potential to yield large efficiency gains, even at large costs. However, if quality is measured by a series of measures that have little relationship with improved patient health, large improvements may not yield efficiency gains, even at small costs. ²⁹

Among existing programs, there is a divergence in the practice of price standardization.
 The public programs (Hospital Value-Based Purchasing, the Physician Value-Based Payment

415 Modifier, and the ACO programs) standardize payments when measuring efficiency. The private
416 plans vary with respect to price standardization, but tend not to standardize prices.

Variation in the prices of health care services charged by different health care providers, 417 particularly among private payers, is well documented.³⁶ Variation in prices among private 418 419 payers is driven largely by the result of negotiations between private payers and individual providers. Measures of health care spending (i.e., cost) that do not first standardize prices will 420 measure costs as the product of price and the quantity of services for individual providers. 421 422 Measures of spending that standardize prices substitute individual provider prices with average 423 prices across the population of providers. The decision of a program sponsor to use either unstandardized or standardized prices depends on the use case, particularly the needs of the 424 425 end user. Individual patients are likely to care more about out-of-pocket spending, which will be more closely related to unstandardized prices. Private insurers that are using tiered benefits 426 427 designs to encourage patients to get care from lower-priced, higher quality providers are also 428 likely to prefer unstandardized prices as well. This highlights the importance of not "stripping" out" variation that is meaningful for consumers and program sponsors through price 429 430 standardization. On the other hand, program sponsors with well-established reasons for price 431 variations (e.g. Medicare's indirect medical education and disproportionate share payments to 432 hospitals) may wish to highlight differences in resource use, and therefore use standardized prices. 433

There also appears to be a general ambivalence on the part of program sponsors with respect to harmonization within the quality and cost domains. This includes harmonization of the quality and cost domains for the same populations of patients (i.e., cost is often assessed

for all patients while the quality measures apply to a narrower set of patients), for the same 437 438 time intervals of measurement (i.e., the quality measures were assessed over much longer time windows than the cost measures), and the methods used to risk adjust for cost and quality 439 outcomes (e.g. Hospital Value-Based Purchasing uses different approaches for quality and cost). 440 441 Over time, efficiency profiling appears to have shifted away from hospitals and towards profiling the efficiency physicians and physician practices. The early efforts in efficiency profiling 442 focused on hospitals,²³ but many now profile physicians and physician groups. This may have to 443 do with the increase in ambulatory measures and advances in physician attribution 444 445 methodology but may also reflect the increased bargaining power of hospitals. Importantly, for the examined approaches for combining quality and cost measurement, 446 there is virtually no assessment of the reliability and validity of efficiency measurement.⁵ In 447 almost all cases, a single measure of efficiency is not defined. Instead, efficiency is defined 448 through the joint consideration of quality and cost, with classification typically based on 449 450 threshold values for both scales. While there is widespread recognition of the small sample size problem associated with efficiency measurement, the most common solution is to use a sample 451 452 size cut-off as an exclusion criterion for providers' data to be profiled. Outside of Hospital Value-Based Purchasing, Bayesian reliability adjustment is not used to increase the reliability of 453 efficiency measurement, although Leapfrog has used reliability adjustment for some surgical 454 mortality measures. 37

456

455

457 Section 5. Combining indicators of quality and cost for different use

458 **Cases**

Indicators of quality and cost could be combined for a variety of "use cases." Potential
use cases include public quality reporting, pay-for-performance, network design, and internal
efficiency profiling and improvement. The key question is whether and how the criteria for
selecting models to combine quality and cost indicators may depend on a specific use case.
What are the trade-offs that one might consider in selecting a model for a specific purpose?
The following are some principals that could be applied to combining quality and cost indicators
for different use cases:

466 1. When measuring efficiency, neither the cost nor quality signals should be obscured. Therefore, provider-level profiles of efficiency should show indicators of cost, quality, 467 468 and efficiency side-by-side. This is particularly relevant for public quality reporting but is also recommended to ensure transparency for pay-for-performance, network design, 469 and internal profiling and improvement. Consumers and referring providers typically 470 471 make highly subjective and idiosyncratic choices about which treatments consumers should receive from which providers. Displaying measures of cost and quality can 472 provide stakeholders with inputs to their own subjective and implicit preference-473 474 weighted decisions case-by-case. When making treatment decisions, consumers can supplement these objective measures with past experience, familiarity, convenience, 475 and informal advice from trusted sources. In situations involving terms of regulation or 476 contracting, the disclosure of individual measures in all relevant domains allows 477

478 stakeholders to understand the individual components which also should be disclosed479 for transparency.

2. The choice of the model to combine measures of quality and cost should depend on the aims of the use case. Efficiency scores and profiles should be developed and displayed across the entire relevant range of specific levels of quality. Quality and efficiency can be measured continuously or discretely. If discrete measures are used (e.g. a star system), categories should reflect meaningful differences across providers rather than arbitrary classifications based on distributinos (e.g. centiles).

3. Models that combine indicators of quality and cost differ with respect to the relative 486 weight or importance that they place on quality and cost. For instance, the quality 487 hurdle model places greater emphasis on cost performance, while the cost hurdle places 488 greater emphasis on quality performance (see **Exhibit 3** and **Exhibit 7**). The choice of 489 model used to combine quality and cost measures could have a significant impact on the 490 491 relative importance of incentives to reduce costs or improve quality. Generally, failure to distinguish differences in performance in all cases above or below a hurdle or 492 493 threshold correspondingly reduces incentives for achieving better performance within such wide ranges. Therefore, policymakers and stakeholders should carefully consider 494 how the choice of model to combine quality and cost measures best meets the goals of 495 the use case. 496

497
4. Whenever possible, continuous measures of efficiency are preferable to arbitrary
498
498
498 classifications, particularly classification based on rankings. For some applications, such
499 as network design, discrete classifications are necessary in order to group providers into

500		different network tiers. However, discrete classifications add to measurement error by
501		grouping heterogeneous providers in homogenous groups. To avoid the potential issue
502		of false precision introduced by the use of continuous scores, variance estimates (such
503		as confidence intervals) should be used whenever possible. Classifications based on
504		rankings (e.g. percentiles) have the potential to magnify the importance of small
505		differences in efficiency if scores are clustered close to threshold values. In some cases,
506		this problem can be addressed through measure selection, i.e., by excluding quality
507		measures that are "topped out;" (i.e., average scores close to the theoretical maximum
508		performance level).
509	5.	When efficiency measures are incorporated as part of public reporting programs,
510		program sponsors should adhere to best practices for the display of information. ³⁸
511		Likewise, program sponsors should incorporate efficiency measures into pay-for-
512		performance programs using best practices for program design. ²⁰
513		

515 Section 6. Implications for the National Quality Forum measure

516 endorsement process

517 To date, few stand-alone measures are being used to assess efficiency. Instead of 518 endorsing specific efficiency measures, the National Quality Forum could choose to endorse a 519 process to combine quality and cost indicators to measure efficiency. A number of measure-520 developers have already developed detailed processes to measure efficiency that they could 521 submit for National Quality Forum endorsement.

If the National Quality Forum decided to endorse approaches to efficiency 522 523 measurement it could consider a number of guidelines. First, the National Quality Forum could 524 stipulate that the quality and cost measures used to measure efficiency should have been previously endorsed. If not, the developer would have to provide a compelling reason. Second, 525 526 the National Quality Forum could provide guidance with respect to whether specifications of quality and cost measures should be harmonized. This may result in the modification of the 527 specifications of measures that have previously been endorsed by the National Quality Forum. 528 529 Third, the output of the efficiency measures should meet the standards of scientific acceptability established by the National Quality Forum. Specifically, efficiency classifications 530 should be reliable and valid, and statistical testing should be able to demonstrate this. 531 532 When developing efficiency profiles of health care providers, the NQF also could 533 recommend a specific process, or set of stages, that program sponsors could follow. The stages could include: 1) articulating the use case; 2) selecting cost and quality measures; 3) 534 535 determining whether and what type of composite measures will be used to measure the cost

and quality domains,; 4) combining the quality and cost indicators in a manner that is most
appropriate for the given use case.

Identifying the use case. Issues related to combining cost and quality measures for
 different use cases were described in the previous section. In some instances, the same
 measures and models to combine indicators may be used for multiple use cases (e.g.,
 pay-for-performance and public quality reporting). In these examples, it is important
 make sure that the choices made for measuring efficiency are appropriate for each of
 the multiple use cases.

544 2. Selecting cost and quality measures. The individual cost and quality measures that are combined to measure efficiency should be reliable, valid, useable, and feasible to 545 collect. The type of quality measure (structure, process, outcome, or patient experience) 546 547 used should depend on the use case. There is a place for process measures, which often are useable and actionable, but they should be proximal to an outcome. For cost 548 549 measures, it is important to anticipate the perspective of the decision-maker. Third-550 party payers are concerned with payments for covered services related to the particular 551 focus of measurement, which may include broad classes of care such as ambulatory surgeries, inpatient admissions, or primary care management of various acute and 552 chronic illnesses. For example, a health plan would evaluate the efficiency or value of 553 surgical procedures based on formulaic or negotiated payment rates for facility and 554 555 professional services (separately or bundled). A consumer perspective would focus on out-of-pocket payments for deductibles, coinsurance, and copayments for the full 556 episode of care. Generally, providers are not identical or necessarily similar in their 557

relative quality, cost, efficiency, or value across lines of service; hence, the NQF
framework for measuring resource use differentially for specific patient-focused
episodes of care.

Whenever possible, it is preferable to harmonize the specifications of the cost and 561 562 quality indicators used to measure efficiency. This includes measuring cost and quality for comparable populations of patients, for the same time intervals of measurement, 563 and the methods used to risk adjust for cost and quality outcomes. Optimally, this 564 565 would be done around common episodes. However, it often may not be possible or 566 reasonable to harmonize cost and quality measures given prevalent limitations in current measures. One key reason for that is composite measures are often used to 567 568 measure quality, and the individual measures contained in composite measures often have different data capture periods, and apply to different populations. Nonetheless, 569 this is a principle to strive for in future measure development. 570 571 When combining measures of quality and cost to assess provider efficiency, it is essential that risk-adjustment procedures are appropriately implemented to hold 572

573 variation in patient severity constant across providers. Standard risk-adjustment

574 procedures use "indirect standardization" in which regression analysis using the entire 575 sample of patients is used to assign severity weights to individual comorbidities and risk 576 factors. These weights are then used to calculate the ratio of "observed" (or "predicted"

³⁹) outcomes, as well as "expected" outcomes,⁴⁰ and combine these to evaluate

578 providers' outcome performance while holding risk constant. However, this approach

579 may be problematic if samples do not overlap on risk factors. In this case, provider

580 outcome profiles may be confounded by specific characteristics that are unrepresented 581 in other providers. Under these circumstances, "direct standardization" may more 582 effectively account for differences in severity across providers.⁴¹

583 3. Determining whether composite measures will be used to measure the cost and

584 quality domains, and which composite approach will be used. Some committee members voiced concern that too much information or detail on the cost and quality 585 signals separately is lost in the composite. However, while composites may be overly 586 587 complex and impractical they may also have important uses. For instance, consumers 588 may prefer a single score that is easy to interpret, and program sponsors may need a single score to evaluate providers (e.g. for pay-for-performance). There are a number of 589 590 approaches to create composite measures. These include all-or-none composites (requiring that a patient receive all recommended care for the composite to be met), 591 composites based on opportunities (equal to the sum of successfully achieved processes 592 593 of care divided by the opportunities to provide recommended care), and composites that assign different weights to different types of measures (e.g., weighting outcome 594 measures more heavily).⁴² There are also a number of NQF-endorsed composite 595 596 measures. While it is preferable for programs to use NQF-endorsed composite measures, the dearth of these measures make this unreasonable in most cases. Instead, 597 programs should have a reasonable justification for the weighting of individual 598 measures, including the known correlation between measures and patient outcomes.³⁴ 599 4. Combining the quality and cost indicators using the most appropriate model for the 600

601

33

given use case. Side-by-side displays of measures, for example for public reporting, can

602	include measures that are scored on mastery, rather than relative performance or
603	rankings. For example, if a large majority of providers have similar or even identical
604	scores on a measure, it may be informative and reassuring for consumers to be aware
605	that their options are similar, or possibly all excellent, on that measure. Distinguishing
606	relative efficiency or value, on the other hand, requires "grading on the curve," with
607	meaningful underlying differences that are measured reliably.

609 List of Exhibits

- **Exhibit 1.** Summary of programs that combine quality and cost indicators to
- 611 measure efficiency
- 612 **Exhibit 2**. Distribution of quality and cost measures used in models
- 613 **Exhibit 3**. Illustration of quality hurdle and cost hurdle models
- 614 **Exhibit 4**. Illustration of unconditional model
- 615 **Exhibit 5**. Illustration of conditional model
- 616 **Exhibit 6**. Illustration of stochastic frontier model
- **Exhibit 7.** Correlation between efficiency scores generated from alternative
- 618 models linking cost and quality indicators
- **Exhibit 8.** Hypothetical example of cost per beneficiary and total quality scores
- 620 for sample hospitals (positive correlation)
- **Exhibit 9.** Hypothetical example of cost per beneficiary and quality scores for
- 622 modified sample (negative correlation)
- 623 Exhibit 10. Illustrative efficiency value system
- 624 **Exhibit 11.** Adjusting the total quality score for efficiency

	Name of program	Services evaluated	Level of attribution	Specification of quality	Specification of cost	Approach to combining
						quality and cost
1.	Aetna Aexcel ⁴⁵	12 categories of	Specialist and	Volume (at least 20 episodes	All costs attributed	Variation on Quality
		specialty services ⁴	physician practice	in the last year)	to specialists for	Hurdle model. Quality
			level	clinical performance	specific episodes of	and volume are assessed
				structure measures (use of	care	first. If costs are lower
				technology, certification)		than threshold based on
				completion of performance-		peer performance,
				based improvement module		providers are designated
				claims based measures		for Aexcel network.
				(HEDIS, readmissions, in-		
				hospital complications)		
2.	Anthem Blue	5 categories of	Specialist and	Receipt of designation from	Combination of all	Quality hurdle model.
	Precision	specialty services ⁵	physician practice	National Committee for	attributed costs,	Physicians must first be
			level	Quality Assurance (NCQA) or	diagnostic testing,	recognized for quality.
				Bridges to Excellence, or	prescription use,	Physicians are then
				performance on clinical	procedures and	designation for
				process measures.	follow-up care, and	recognition if their cost
					hospital care.	performance is not
						significantly higher (p <
						.10) of 110% the
						geographic average.
3.	Blue Cross and Blue	6 categories of	Hospital	Nationally consistent	All costs for specific	Quality Hurdle Model
	Shield Blue	specialty services ⁶		measures based on structure,	episodes of care	

626 **Exhibit 1.** Summary of programs that combine quality and cost indicators to measure efficiency³

³ In addition to the programs identified in this table, we are aware of a number of other programs that appeared to combine indicators of quality and cost to measure efficiency. These include programs initiated by Castlight Health, the Minnesota Smart Buy Alliance, PacifiCare, the Puget Sound Health Alliance, Blue Shield of Oregon, Tufts Health plan, and the Wisconsin Department of Employee Trust Funds. However, we were unable to obtain detailed information about how the programs were specified.

⁴ Cardiology, Cardiothoracic surgery, Gastroenterology, General surgery, Neurology, Neurosurgery, Obstetrics and gynecology, Orthopedics,

Otolaryngology/ENT, Plastic surgery, Urology, and Vascular surgery

⁵ Rheumatology, cardiology, obstetrics/gynecology, endocrinology, and pulmonary medicine.

⁶ Six specialty care areas are included: Spine Surgery, Knee and Hip Replacement, Cardiac Care, Transplants, Bariatric Surgery and Complex and Rare Cancers. The three specialty care areas with asterisks have Blue Distinction Centers; Blue Distinction Center+ designations will continue to roll out in other areas, beginning with Transplants in early 2014.

	Name of program	Services evaluated	Level of attribution	Specification of quality	Specification of cost	Approach to combining
						quality and cost
	Distinction Centers [®] for Specialty Care ⁴⁶⁻⁴⁸			process, outcomes, and patient experience. Hospitals	(including facility, professional, other).	
				must meet quality thresholds for each domain. Measures were developed with input from the medical community.	Each provider's cost of care is calculated on an episode basis, using allowed amounts based on Blue Plans' claims data. The cost of care criteria takes into account outliers, patient level risk factors, and geographic variation, before each facility is assessed against a consistent national benchmark.	
4.	Blue Cross Blue Shield of Illinois and advocate health care ⁴⁹	All covered services for Advocate health care, a not-for-profit integrate system	System level	Performance for 12 measures	Global budget target	Combination of Quality Hurdle and Cost Hurdle Models.
5.	Blue Cross Blue Shield of Michigan Hospital P4P program ⁵⁰	Hospitalized patients with specific index admissions	Hospital	Composite index of collaborative Quality Initiatives, population based, performance, all-cause readmissions	Diagnosis standardized cost- per-case	Unconditional Model. Payments are based on the weighted sum of quality and cost domains
6.	Blue Cross Massachusetts Alternative Quality Contract ⁵¹	All covered services	Alternative Quality Contract provider organizations	32 ambulatory measures, 32 hospital measures. 5 Quality "gates" for each measure, resulting in different bonus	Global budget target	Unconditional Model. High quality is rewarded as a bonus, can equal up to 10% of global budget. ⁷

⁷ The AQC can be conceptualized two different programs that are not directly connected: a shared savings program and a quality bonus program.

	Name of program	Services evaluated	Level of attribution	Specification of quality	Specification of cost	Approach to combining
						quality and cost
				payments. Outcome measures are triple weighted. Non-linear function between quality score and payout. ^{52,53}		
7.	Buyers Health Care Action Group Purchasing Initiative ^{54,55}	All services	Care systems in Minneapolis/St. Paul	Patient experience and participation in quality improvement initiatives.	Total costs	Side-by-Side Model
8.	Cigna Care Designation ⁵⁶	22 categories of specialist services ⁸	Physicians and physician groups	5 domains related to National Committee for Quality Assurance (NCQA) Physician Recognition; Group Board Certification; Composite quality index on adherence to 101 Evidence-Based Medicine (EBM) Rules; American Board of Internal Medicine Process Improvement Module Completion; Certified Bariatric Center Affiliated Surgeons.	Costs related to Episode Treatment Group (ETG) methodology	Conditional Model. Providers are compared by specialty within markets.
9.	Cigna Collaborative Accountable Care ⁵⁷	All covered services	Large primary care or multispecialty practices, integrated delivery system, of physician-hospital organization	Composite measure assessing adherence to evidence based medicine for preventive care, chronic care, and acute care.	Unclear	Quality Hurdle Model
10.	Health Partners Relative Resource Use ⁵⁸	Primary care, specialty care, and hospitals	Physicians, physician practices, and hospitals	Separate composite measures for primary care, specialty care, and hospitals. Components of composite	Uses NQF endorsed total cost of care measure. Encompasses all	Side-by-Side Model

⁸ Allergy and Immunology, Cardiology, Cardio-Thoracic Surgery, Colon and Rectal Surgery, Dermatology, Ear, Nose and Throat, Endocrinology, Family Practice, Gastroenterology, General Surgery, Hematology and Oncology, Internal Medicine, Nephrology, Neurology, Neurosurgery, Obstetrics and Gynecology, Ophthalmology, Orthopedics and Surgery, Pediatrics, Pulmonary, Rheumatology, and Urology

	Name of program	Services evaluated	Level of attribution	Specification of quality	Specification of cost	Approach to combining
						quality and cost
				differ for different types of	services	
				services.	with/without price	
					standardization.	
11.	Hospital Value-Based	Part A and Part B	Hospital	Sum of performance score	Episode covering	Unconditional Model
	Purchasing	Medicare services		(incorporating attainment and	standardized	
				improvement) for individual	payments from 3	
				measures in various domains	days prior and 30	
				(outcomes, clinical process,	days following	
				and patient experience)	hospitalization.	
12.	Integrated	For seven health	Physician	31 clinical quality measures,	Per member per	Quality Hurdle and Cost
	Healthcare	plans in California.	organizations	15 meaningful use measures,	months total cost of	Hurdle Models are used
	Association Value			6 patient experience	care, including	together. Shared savings
	Based pay-for-			measures, 12 appropriate	physician, hospital,	model then adjusts
	performance			resource use measures.	pharmacy and	savings by quality
	program				ancillary payments.	performance.
13.	Leapfrog Hospital	Patients hospitalized	Hospital	Composite score of multiple	Inpatient costs	Conditional Model
	Rewards Program ⁵⁹	with AMI,		measures. Uses a two-level		
		pneumonia, or child		weighting approach based on		
		birth, or receiving		potential of indicator to		
		CABG or PCI.		reduce mortality and the		
				importance of the indicator to		
				the employer.		
14.	Maine Health	Adult care, pediatric	Physicians,	Composite measure based on	Whether practice is	Side-by-Side Model
	Management	care, and hospital	physician practices,	Bridges to Excellence /	"working to control	
	Coalition	care	and hospitals	Hospital Compare measures	cost"	
				categorized into "low",		
				"good", "better", and "best"		
15.	Maryland multi-	All covered services	Primary care	21 quality measures; and	Total costs for	The Cost Hurdle Model.
	payer patient-		practices	reductions in use of high-cost	assigned patients.	
	centered medical			services.		
	home program ⁴⁹					
16.	Massachusetts Group	All covered services	Physician-level.	Composite based on 79	Price standardized	Unclear
	Insurance		Physician profiles	quality measures relevant to	episode costs based	
	Commission value-		various participating	particular providers	on Symmetry	

	Name of program	Services evaluated	Level of attribution	Specification of quality	Specification of cost	Approach to combining
	tiering program ^{60,61}		plans		Episode Treatment Group methodology ⁶²	
17.	Medica and Fairview health services ⁴⁹	All covered services for Fairview Health Services, a non-profit health system	System level	Minimum quality gate, then confidential algorithm	Global budget target	Unclear
18.	Medicare Physician Group Practice Demonstration	Part A and Part B Medicare services	Integrated delivery systems	Performance for 32 ambulatory care performance measures.	Total costs per capita for aligned beneficiaries	Unconditional Model (it seems)
19.	Medicare Shared Savings and Pioneer Accountable Care Organization programs ⁶³	Part A and Part B Medicare services	Accountable Care Organization	Composite measure of patient/caregiver experience (7 measures); Care coordination/patient safety (6 measures); Preventive health (8 measures); At-risk population: Diabetes (1 measure and 1 composite consisting of five measures); Hypertension (1 measure) Ischemic Vascular Disease (2 measures); Heart Failure (1 measure); Coronary Artery Disease (1 composite consisting of 2 measures).	Payment standardized total costs per capita for aligned beneficiaries	Quality Hurdle Model
20.	NCQA relative resource use ⁶⁴	Condition-specific costs for people with specified chronic diseases. ⁹	Health plan level by product (e.g. HMO, PPO)	Composite measure based on HEDIS indicators relevant to disease area	Annual condition- specific costs for all relevant services	Side-by-Side Model
21.	Physician Value-	Part A and Part B	Physician practice	Composite measure of clinical	Composite measure	Conditional Model

⁹ Asthma, cardiovascular conditions, COPD, diabetes, and hypertension

	Name of program	e of program Services evaluated Level of attribution		Specification of quality	Specification of cost	Approach to combining
	Based payment modifier	Medicare services	-	care, patient experience, population/community health, patient safety, care coordination, and efficiency.	of total costs per capita for attributed beneficiaries, and for beneficiaries with specific chronic disease	
22.	Tufts Health Plan primary care "Blue Ribbon" program ⁶⁵	Primary care	Physician practice	7 HEDIS process of care measures and 7 patient experience measures. Calculate adjusted composite process scores (z-scores), and composite scores for patients experience (z-scores). Scores were then summed and renormalized.	Primary care Episode Treatment Groups	The Conditional Model. The quality and cost domains are standardized and combined with equal weighting. To be designated with the "Blue Ribbon", providers must be above the median on both the quality and cost domains, as well as the combined domain.
23.	UnitedHealth Premium ⁶⁶⁻⁶⁸	25 categories of specialist services. ¹⁰	Physician, physician practices	Composite score based on evidence based measures related to preventive care, appropriate care, chronic disease care, patient safety, sequencing of care, and care outcomes.	Risk adjusted total cost of care (population cost), and episode cost measurement.	The Unconditional Model. Provider designations are made separately for cost and quality based on statistical criteria. It's unclear how the different designations translate into payment or cost sharing differences.

¹⁰ Allergy, Cardiology, Cardiology – Electrophysiology, Cardiology – Interventional, Endocrinology, Family Medicine, General Surgery, General Surgery -Colon/Rectal, Internal Medicine, Nephrology, Neurology, Neurosurgery – Spine, Ophthalmology, Obstetrics and Gynecology, Orthopedics - Foot/Ankle, Orthopedics – General, Orthopedics – Hand, Orthopedics - Hip/Knee, Orthopedics - Shoulder/Elbow, Orthopedics – Spine, Orthopedics – Sports Medicine, Pediatrics, Pulmonology, Rheumatology, and Urology

	Name of program	Services evaluated	Level of attribution	Specification of quality	Specification of cost	Approach to combining
						quality and cost
24.	Virginia Cardiac	All cardiac surgical	Surgeon and	Extensive structure (volume),	Normalized hospital	Side-by-side Model.
	Surgery Quality	patients	hospital	process, and outcome	and surgeon	Comparisons are made
	Initiative ⁶⁹			(mortality and complication)	charges ⁷⁰	for anonymized hospitals
				measures.		and are primarily on
						quality measures.

Exhibit 3. Illustration of quality hurdle and cost hurdle models

Exhibit 4. Illustration of unconditional model

Exhibit 6. Illustration of stochastic frontier model

Exhibit 7. Correlation between efficiency scores generated from alternative

648 models linking cost and quality indicators

Model	Quality hurdle	Cost hurdle	Unconditional (70% quality)	Unconditional (30% quality)	Conditional
Quality hurdle	-	-	-	-	-
Cost hurdle	0.1003	-	-	-	-
Unconditional (70% quality)	0.3196	0.8055	-	-	-
Unconditional (30% quality)	0.7802	0.2590	0.6610	-	-
Conditional	0.2122	0.7591	0.8906	0.5118	-
Frontier	0.0718	0.8745	0.9492	0.3992	0.8753

Exhibit 8. Hypothetical example of cost per beneficiary and total quality scores

653 for sample hospitals (positive correlation)

Exhibit 9. Hypothetical example of cost per Beneficiary and quality scores for 660 modified sample (negative correlation)

Exhibit 10. Illustrative efficiency value system

				٨	10	**	**	***	***	****	****	****	****	****	****
			н	,	9	*	**	***	***	****	****	****	****	****	****
			i o		8	*	**	**	***	***	****	****	****	****	****
			ь h	_	7	*	**	**	**	***	***	****	****	****	****
	Efficien	icy	e	_	6	*	*	**	**	***	***	****	****	****	****
	Score	2	r	_	5	*	*	**	**	***	***	****	****	****	****
			E	_	4	*	*	**	**	***	***	****	****	****	****
			f r	_	3	*	*	*	**	**	***	***	****	****	****
			'	_	2	*	*	*	**	**	**	***	***	****	****
				I	1	* 1 10	[*]	* 21.20	^ 21_40	^{**}	^{**}	^{***}	71 00	****	· · · · · · · · · · · · · · · · · · ·
						1-10	11-20	21-30	31-40	41-50	51-60	61-70	/1-80	81-90	91-100
										Higher	Quality				
660									То	tal Qua	alitv Sc	ore			
009											•				
670															
671	Legend														
672	* =	1 St	ar Ef	fficier	ncy Rating	g (Lowe	st Ratir	ng)							
673	** =	2 St	ar E	fficie	ncy Rating	S									
674	*** =	: 3 St	tar E	fficie	ncy Rating	B									
675	**** =	= 4 St	tar E	fficie	ncy Rating	g									
676	***** =	= 5 S ⁺	tar E	fficie	ncy Ratin	g (Higho	est Rat	ing)							
677															
678															
679															

Exhibit 11. Adjusting the total quality score for efficiency¹¹

	10	-1 pt	-1 pt	0 pts	0 pts	+ 1 pt	+ 1 pt	+2 pts	+2 pts	+2 pts	+2 pts
	9	-2 pts	-1 pt	0 pts	0 pts	+ 1 pt	+ 1 pt	+ 1 pt	+2 pts	+2 pts	+2 pts
	8	-2 pts	-1 pt	-1 pt	0 pts	0 pts	+ 1 pt	+ 1 pt	+2 pts	+2 pts	+2 pts
	7	-2 pts	-1 pt	-1 pt	-1 pt	0 pts	0 pts	+ 1 pt	+1 pt	+2 pts	+2 pts
Efficiency	6	-2 pts	-2 pts	-1 pt	-1 pt	0 pts	0 pts	+ 1 pt	+1pt	+2 pts	+2 pts
Score	5	-2 pts	-2 pts	-1 pt	-1 pt	0 pts	0 pts	+ 1 pt	+1 pt	+2 pts	+2 pts
	4	-2 pts	-2 pts	-1 pt	-1 pt	0 pts	0 pts	+ 1 pt	+1pt	+ 1 pt	+2 pts
	3	-2 pts	-2 pts	-2 pts	-1 pt	-1 pt	0 pts	0 pts	+1pt	+ 1 pt	+2 pts
	2	-2 pts	-2 pts	-2 pts	-1 pt	-1 pt	-1 pt	0 pts	0 pts	+ 1 pt	+2 pts
	1	-2 pts	-2 pts	-2 pts	-2 pts	-1 pt	-1 pt	0 pts	0 pts	+ 1 pt	+ 1 pt
		1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	91-100
					Тс	tal Qua	ality Sco	ore			
Summary Table * = 1 Star Efficiency Rating (Lowest Rating) = Total Quality Score – 2 pts ** = 2 Star Efficiency Rating = Quality Points – 1 pt											
** = 3	** = 3 Star Efficiency Rating = Quality Points + 0 pts										
****	 ** = 4 Star Efficiency Rating = Quality Points + 1 pt *** = 5 Star Efficiency Rating (Highest Rating) = Total Quality Score + 2 pts 										
· · · · · · = L	5 Sta	ar Effici	ency Ra	nting (H	ighest	Rating)	= Tota	l Qualit	y Score	e + 2 pt	ts

¹¹ It is also possible to construct a function that approximates the point assignments in Exhibit 11 (and by extension the star assignment in Exhibit 10) rather than make individual determinations of the point values that should be assigned to each cell. For example, the grid in Exhibit 10 represents a function where quality is weighted twice as much as efficiency in determining the point totals. The function is of the form: a*quality score + b*efficiency score + k ,with a max/min of +/- 2. If the max/min of +/-2 is removed, the highest point adjustments would be +/- 3 rather than +/- 2.

Appendix A: Applications outside of health care that combine indicators of quality and cost

695

There are a number of efforts outside of health care that link measures of products' cost 696 697 and quality to measure "value." These include efforts by Consumer Reports to measure the 698 value of automobiles and US News and Weekly Report's rankings of the value of colleges. 699 Consumer Reports' 2014 rankings of the "Best and Worst Cars for the Money" assigns cars a "value-score" based on the combination of a "road test score" (i.e., quality), a composite rated 700 701 on a 100 point scale, a predicted reliability score (assessing how well the car is likely to hold up 702 given the reliability of recent models), and 5-year ownership costs. This value score is then 703 displayed alongside the car's price and the component factors comprising the value score 704 (ownership costs, road test score, and predicted reliability). The rankings also use a fudge factor 705 to "not recommend" cars as a result of poor reliability. They are able to do this because the 706 ratings are concerned primarily with identifying highly recommended cars: it is therefore not 707 concerned about precise measurements of poor value, and instead focuses on precisely 708 measuring the highest value cars. Value rankings are then displayed within classes of cars (e.g. 709 compact cars, midsized cars, luxury cars, small sport utility vehicles, midsized sport utility 710 vehicles, etc.). See Appendix Exhibit 1 for how these data are displayed. The model used to calculate value rankings is not specified. Consumer Reports' automobile value ratings have a 711 712 close analogue to efficiency-tiering in health care. These programs are frequently designed to 713 direct patients towards higher efficiency providers (through a "designation" program) rather 714 than directing patients away from lower efficiency providers and report efficiency for different 715 "classes" of physicians (i.e., different specialties).

US News and World Reports compiles a list of the highest value colleges and universities in their "Best Value Schools."⁷¹ To do this, they first assess school quality as a composite of the student selectivity, college graduation rates, assessment from peer institutions, faculty resources (i.e., class size), financial resources, and alumni giving. They then create a value score as the weighted combination of three factors: 1) 60% is for the ratio of quality to cost (including tuition, room and board, books, and other expenses), discounted according to the average

722 need-based scholarship; 2) an unspecified percentage is based on the percentage of students 723 who received need-based aid; 3) an unspecified percentage is based the percentage of total 724 costs that are discounted. Similar to Consumer Reports' automobile rankings, US News ranks the value of schools within different categories (e.g. national universities, regional universities, 725 national liberal arts colleges, and regional liberal arts colleges). When showing the rankings of 726 schools based on value, US News and World Reports displays some of the component parts 727 side-by-side (percentage of students receiving need-based grants and the average cost after 728 receiving grants based on need), but not all of the parameters going into the value calculation 729 730 (see Appendix Exhibit 2). This model for combining quality and cost to measure value is similar 731 to the unconditional model with a large weight towards cost.

Appendix Exhibit 1. Screen shot from Consumer Reports 2014 "Best and Worst

734 Cars for the Money"

Make & model	Price	Val	ue score	Cost per mile	Test	Predicted
COMPACT/SUBCOMPACT C	ARS W	orse 0 0.	Average Be 5 1.0 1.5 2	etter 0	Jocore	renusinty
Toyota Prius Four*	\$29,230			\$0.47	79	0
Honda Fit (base)*	16,915			0.43	68	0
Scion xB	18,360			0.50	68	0
Volkswagen Golf (2.5)	20,565			0.53	85	•
Toyota Corolla LE Plus	20,652			0.48	72	•
Volkswagen Golf TDI (MT)	25,730			0.50	88	0
Honda Civic EX	21,605			0.50	71	•
Honda Civic Hybrid	25,140			0.48	66	•
Subaru Impreza Premium	21,345			0.55	82	•
Subaru Impreza Sport Premium	22,345			0.54	79	•
Hyundai Accent sedan GLS	16,050			0.49	65	•
Hyundai Elantra SE	19,410			0.52	80	0
Chevrolet Cruze LS (1.8L)	18,375			0.55	69	٠
Dodge Dart Limited (1.4T)	24,490			0.62	61	Θ
Volkswagen Beetle 2.5L (MT)	20,835		Í	0.52	60	•
MIDSIZED CARS						
Subaru Legacy 2.5i Premium	24,189			0.59	81	0
Mazda6 Sport	23,590			0.56	85	•
Honda Accord LX (4-cyl.)	23,270			0.54	90	0
Hyundai Sonata GLS (2.4L)	21,800			0.55	89	0
Volkswagen Passat TDI SE	28,665			0.54	80	0
Kia Optima LX (2.4L)	21,885			0.59	81	0
Chevrolet Malibu 1LT (2.5L)	26,030			0.60	84	0
Chrysler 200 Limited (V6)	27,825			0.69	52	0
Nissan Altima 3.5 SL	31,610			0.70	84	•
LARGE CARS						
Toyota Avalon Hybrid Limited	42,501			0.69	86	•
Toyota Avalon Limited (V6)	40,670			0.79	85	0
Nissan Maxima 3.5 SV	33,700			0.77	83	•
Hyundai Azera	37,185			0.79	81	0
Buick LaCrosse (Leather, eAssist)	34,935			0.72	78	\cap
ource: http://www.co	nsumer	rec	orts.or	g/cro/2	2012	/05/best

736 So

738 Appendix Exhibit 2. Screen shot from US News and World Reports 2014 "Best

739 Value Schools"

IATIONA	LIBERAL ARTS COLL	EGES REGIONAL UNIVE	REGIONAL COLLEGES	
lank	School	Percent receiving need-based grants	Average cost after receiving grants based on need	
#1	Harvard University Cambridge, MA	59.5%	\$15,486	
#2	Yale University New Haven, CT	54.0%	\$16,205	
#3	Princeton University Princeton, NJ	58.9%	\$17,614	
#4	Stanford University Stanford, CA	49.7%	\$18,593	
#5	Massachusetts Institute of Technology Cambridge, MA	57.7%	\$19,957	
#6	Columbia University New York, NY	49.9%	\$20,435	
#7	California Institute of Technology Pasadena, CA	52.4%	\$21,551	

- 754 Source: <u>http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/national-</u>
- 755 <u>universities/best-value/spp+50</u>

756

758 **References**

- Crawford S. Linking cost and quality expert panel orientation. Paper presented at: National
 Quality Forum 2014.
- Cutler DM. Where are the health care entrepreneurs? The failure of organizational innovation in health care. In: Lerner J, Stern S, eds. *Innovation Policy and the Economy*. Vol 11. Chicago:
 University of Chicago Press; 2011:1-28.
- The watch on the job. *New England Journal of Medicine*. 1969;281(14):792-793.
- 7654.Thornton TN, Leonard RC. Experimental comparison of effectiveness and efficiency of three766nursing approaches. Nursing Research. 1964;13:122-125.
- For S. Hussey PS, de Vries H, Romley J, et al. A systematic review of health care efficiency measures. *Health Services Research*. 2009;44(3):784-805.
- 769 6. National Quality Measures Clearinghouse. Varieties of measures in NQMC. *Tutorials on Quality* 770 *Measures* http://www.qualitymeasures.ahrq.gov/tutorial/varieties.aspx. Accessed 04/14/2014.
- 7. Korenstein D, Falk R, Howell E, Bishop T, Keyhani S. Overuse of health care services in the United
 States: An understudied problem. *Archives of Internal Medicine*. 2012;172(2):171-178.
- 7738.Burke LA, Ryan AM. The complex relationship between cost and quality in US health care. The774Virtual Mentor. 2014;16(2):124-130.
- Doyle JJ, Graves JA, Gruber J, Kleiner S. Do high-cost hospitals deliver better care? Evidence from
 ambulance referral patterns. www.nber.org March 2012.
- Fisher ES, Wennberg DE, Stukel TA, Gottlieb DJ, Lucas FL, Pinder EL. The implications of regional
 variations in Medicare spending. Part 1: the content, quality, and accessibility of care. *Annals of Internal Medicine*. 2003;138(4):273-287.
- Silber JH, Kaestner R, Even-Shoshan O, Wang Y, Bressler LJ. Aggressive treatment style and
 surgical outcomes. *Health Services Research*. 2010;45(6 Pt 2):1872-1892.
- Gao J, Moran E, Almenoff PL, Render ML, Campbell J, Jha AK. Variations in efficiency and the
 relationship to quality of care in the veterans health system. *Health Affairs (Millwood)*.
 2011;30(4):655-663.
- 78513.National Quality Forum. Measurement framework: Evaluating efficiency across patient-focused786episodes of care. Washington D.C.: National Quality Forum;2009.
- 14. Institute of Medicine. *Crossing the quality chasm: The IOM health care quality initiative.*Washington, D.C.: Institute of Medicine;2001.
- 15. Leatherman S, Berwick D, Iles D, Lewin L, Davidoff F, Nolan T, Bisognano M. The business case
 for quality: case studies and an analysis. *Health Affairs (Millwood)*. 2003;22(2):17-30.
- 79116.Ryan AM. Effects of the Premier Hospital Quality Incentive Demonstration on Medicare patient792mortality and cost. *Health Services Research.* 2009;44(3):821-842.
- 793 17. Robinson JC. The end of managed care. *Journal of the American Medical Association*.
 794 2001;285(20):2622-2628.
- VanLare JM, Blum JD, Conway PH. Linking performance with payment: implementing the
 Physician Value-Based Payment Modifier. *Journal of the American Medical Association.*2012;308(20):2089-2090.
- 79819.Ryan A, Blustein J. Making the best of hospital pay for performance. The New England Journal of799Medicine. 2012;366(17):1557-1559.
- Ryan AM, Damberg CL. What can the past of pay-for-performance tell us about the future of
 Value-Based Purchasing in Medicare? *Healthcare*. 2013;1(1-2):42-49.
- Fisher ES, McClellan MB, Safran DG. Building the path to accountable care. *New England Journal of Medicine*. 2011;365(26):2445-2447.

804	22.	Variation in Health Care Spending: Target Decision Making, Not Geography. The National
805		Academies Press; 2013.
806	23.	Robinson JC. Hospital tiers in health insurance: Balancing consumer choice with financial
807		incentives. Health Affairs (Millwood). 2003;Suppl Web Exclusives:W3-135-146.
808	24.	Obamacarefacts.com. Types of Health Insurance Plans. 2014;
809		http://obamacarefacts.com/insurance-exchange/health-insurance-plans.php Accessed April 14,
810		2014, 2014.
811	25.	Wall JK. Amid Obamacare's changes, WellPoint keeps old playbook. The Dose. July 25, 2013
812		www.ibj.com: Indianapolis Business Journal; 2013.
813	26.	Robinson JC, Brown TT. Increases in consumer cost sharing redirect patient volumes and reduce
814		hospital prices for orthopedic surgery. <i>Health Affairs (Millwood)</i> . 2013;32(8):1392-1397.
815	27.	Sennett C, Starkey K. Measuring and improving efficiency in Health Care: Report from an ABIM
816		foundation/IOM meeting. Philadelphia: ABIM Foundation;2006.
817	28.	Krumholz HM, Keenan PS, Brush JE, Jr., et al. Standards for measures used for public reporting of
818		efficiency in health care: A scientific statement from the American Heart Association
819		Interdisciplinary Council on Quality of Care and Outcomes Research and the American College of
820		Cardiology Foundation. Circulation. 2008;118(18):1885-1893.
821	29.	Timbie JW, Normand SL. A comparison of methods for combining quality and efficiency
822		performance measures: Profiling the value of hospital care following acute myocardial
823		infarction. Statistics in Medicine. 2008;27(9):1351-1370.
824	30.	Tompkins CP, Higgins AR, Ritter GA. Measuring outcomes and efficiency in Medicare Value-
825		Based Purchasing. Health Affairs (Millwood). 2009;28(2):w251-261.
826	31.	Kessler D, McClellan M. The effects of hospital ownership on medical productivity. Cambridge,
827		MA: National Bureau of Economic Research;2001.
828	32.	Hollingsworth B. The measurement of efficiency and productivity of health care delivery. Health
829		Economics. 2008;17(10):1107-1128.
830	33.	Rosko MD. Measuring technical efficiency in health care organizations. Journal of Medical
831		Systems. 1990;14(5):307-322.
832	34.	Meltzer DO, Chung JW. The population value of quality indicator reporting: A framework for
833		prioritizing health care performance measures. <i>Health Affairs (Millwood)</i> . 2014;33(1):132-139.
834	35.	Berenson RA. Moving payment from volume to value: What role for performance measurement?
835		Urban Institute;2010.
836	36.	Massachusetts Division of Health Care Finance and Policy. Massachusetts health care cost
837		trends: Price variation in health care services. Boston, MA 2011.
838	37.	The Leapfrog Group. Survival predictor (surgical mortality). Washington D.C.: Academy Health;
839		2011.
840	38.	Hibbard J, Sofaer S. Best practices in public reporting No. 1: How to effectively present health
841		care performance data to consumers. Rockville, MD: Agency for Healthcare Research and
842		Quality;May 2010.
843	39.	Krumholz HM, Wang Y, Mattera JA, Wang Y, Han LF, Ingber MJ, Roman S, Normand SL. An
844		administrative claims model suitable for profiling hospital performance based on 30-day
845		mortality rates among patients with an acute myocardial infarction. <i>Circulation</i> .
846		2006;113(13):1683-1692.
847	40.	Burack JH, Impellizzeri P, Homel P, Cunningham JN. Public reporting of surgical mortality: A
848		survey of New York State cardiothoracic surgeons. Annals of Thoracic Surgery. 1999;68(4):1195-
849		1200.

850	41.	Silber JH, Rosenbaum PR, Ross RN, Ludwig JM, Wang W, Niknam BA, Mukherjee N, Saynisch PA,
851		Even-Shoshan O, Kelz RR, Fleisher LA. Template matching for auditing hospital cost and quality.
852		Health Services Research. 2014;epub ahead of print.
853	42.	National Quality Forum. <i>Composite performance measure evaluation guidance</i> . Washington, DC:
854		National Quality Forum;2013.
855	43.	Oregon Select Network Comparison Guide. http://www.or.regence.com/network/. Accessed
856		04/14/2014, 2014.
857	44.	Phinney S. Regence BlueShield sued for defamation. Seattle pi: 2006.
858	45.	Aetna. Aexcel performance network designation measurement methodology. Aetna;2014.
859	46.	Blue Cross Blue Shield Association. Blue Distinction Centers: An overview.
860		http://www.bcbs.com/why-bcbs/blue-distinction/. Accessed 04/24/2014.
861	47.	Blue Cross Blue Shield Association. Blue Distinction Specialty Care Program: 2013 Program
862		selection criteria for Blue Distinction Centers for cardiac care.
863		http://www.bcbs.com/healthcare-partners/blue-distinction-for-
864		providers/cardiacprogramcriteria.pdf. Accessed 04/24/2014.
865	48.	Blue Cross Blue Shield Association. Blue Distinction Specialty Care Program: 2011-2012 Program
866		selection criteria for Blue Distinction Centers for spine surgery and Blue Distinction Centers for
867		knee and hip replacement. http://www.bcbs.com/healthcare-partners/blue-distinction-for-
868		providers/BDC SpineKneeHip Selection Criteria.pdf. Accessed 04/24/2014.
869	49.	Bailit M, Hughes C, Burns M, Freedman DH. Share-savings payment arrangements in health care:
870		Six case studies. New York, NY: The Commonwealth Fund;2012.
871	50.	Blue Cross Blue Shield of Michigan. 2014 Hospital pay-for-performance program: Peer groups 1-
872		4. Michigan2014.
873	51.	Blue Cross Blue Shield of Massachusetts: The Alternative Quality Contract. Blue Cross Blue Shield
874		of Massachusettes; May 2010 2010.
875	52.	Chernew ME, Mechanic RE, Landon BE, Safran DG. Private-payer innovation in Massachusetts:
876		The 'Alternative Quality Contract'. <i>Health Affairs (Millwood)</i> . 2011;30(1):51-61.
877	53.	Song Z, Safran DG, Landon BE, He Y, Mechanic RE, Day MP, Chernew ME. The 'Alternative
878		Quality Contract,' based on a global budget, lowered medical spending and improved quality-
879		Supplemental Materials. Health Affairs (Millwood). 2012;31(8):1885-1894.
880	54.	Christianson JB, Feldman R. Evolution in the Buyers Health Care Action Group purchasing
881		initiative. Health Affairs (Millwood). 2002;21(1):76-88.
882	55.	Lyles A, Weiner JP, Shore AD, Christianson J, Solberg LI, Drury P. Cost and quality trends in direct
883		contracting arrangements. Health Affairs (Millwood). 2002;21(1):89-102.
884	56.	Cigna. Cigna care designation and physician quality and cost-efficiency displays: 2013
885		Methodologies Whitepaper. Cigna;2013.
886	57.	Cigna. Collaborative accountable care: CIGNA's approach to Accountable Care Organizations.
887		Cigna;2011.
888	58.	HealthPartners. Cost and quality ratings:Medical group and hospital ratings. 2014;
889		https://www.healthpartners.com/public/cost-and-quality/index.html. Accessed April 14, 2014.
890	59.	The Agency for Healthcare Research and Quality, The Employer Health Care Alliance
891		Cooperative. Efficiency in health care: What does it mean? How is it measured? How can it be
892		used for Value-Based Purchasing? 2006; Madison, WI.
893	60.	Carroll J. Early Tiered networks encounter many obstacles. Managed Care: MediMedia Managed
894		Markets; 2007.
895	61.	Alteras T, Silow-Carroll S. Value-driven health care purchasing: Case study of the Massachusetts
896		Group Insurance Commission. The Commonwealth Fund;2007.
897		

898 899	62.	Sinaiko AD, Rosenthal MB. The impact of tiered physician networks on patient choices. <i>Health</i> Services Research, 2014: epub ahead of print.
900	63.	RTI International. Accountable care organization 2013 program analysis: Ouglity performance
901		standards narrative measure specifications. Baltimore, MD: Centers for Medicare & Medicaid
902		Services:2012.
903	64.	NCQA. Relative Resource Use. 2014; http://www.ncga.org/tabid/1231/default.aspx. Accessed
904		04/14/2014, 2014.
905	65.	Tufts Health Plan Blue Ribbon Value Methodology- Summary. Tufts Health Plan;2006.
906	66.	UnitedHealthCare. UnitedHealth Premium Physician Designation Program: Summary
907		methodology. UnitedHealthCare;2014.
908	67.	UnitedHealthCare. UnitedHealth Premium Physician Designation Program: Detailed
909		Methodology. 2014.
910	68.	United Healthcare Online. Premium Methodology.
911		https://www.unitedhealthcareonline.com/b2c/CmaAction.do?channelId=45dff1ab39f24210Vgn
912		VCM10000b640dd0a . Accessed 04/24/2014.
913	69.	Virginia Cardiac Surgery Quality Initiative. 2014; http://www.vcsqi.org.
914	70.	Speir AM, Kasirajan V, Barnett SD, Fonner E. Additive costs of postoperative complications for
915		isolated coronary artery bypass grafting patients in Virginia. The Annals of Thoracic Surgery.
916		2009;88(1):40-46.
917	71.	Morse R. Best value schools methodology. US News and World Report2013.
918		http://www.usnews.com/education/best-colleges/articles/2013/09/09/best-value-schools-
919		methodology
020		
920		
921		
922		