# NATIONAL QUALITY FORUM National Voluntary Consensus Standards for Patient Outcomes Measure Summary

#### Measure number: OT1-016-09

<u>Measure name</u>: 30-Day post-hospital acute myocardial infarction (AMI) discharge care transition composite measure

**Description:** This measure scores a hospital on the incidence among its patients during the month following discharge from an inpatient stay having a primary diagnosis of acute myocardial infarction (AMI) for three types of events: readmissions, ED visits, and evaluation and management (E&M) services.

These events are relatively common, measurable using readily available administrative data, and associated with effective coordination of care after discharge. The input for this score is the result of measures for each of these three events that are being submitted concurrently under the Patient Outcomes Measures Phase I project's call for measures (ED and E&M) or is already approved by NQF (readmissions). Each of these individual measures is a risk-adjusted, standardized rate together with a percentile ranking. This composite measure is a weighted average of the deviations of the three risk-adjusted, standardized rates from the population mean for the measure across all patients in all hospitals. Again, the composite measure is accompanied by a percentile ranking to help with its interpretation.

**<u>Numerator statement</u>**: The numerator is the weighted sum of the three deviations from their expected values for the individual measures comprising the component measure. The question of appropriate weights on the deviations is difficult and would probably lead to a wide variation in opinion. The weights of -4, -2, and 1 are selected to represent order of magnitude differences in seriousness of the three outcomes, which most would agree to (that is to say: readmission is more important than ED which is more important in a negative way than E&M service is in a positive way). The idea of not using weights was also considered, but this was noted to be itself a de facto weight scheme (with all weights the same), and as such, a weight scheme that was less appropriate than the one chosen.

**Denominator statement:** The composite measure is the weighted sum of three individual measures. Thus, the denominator is one.

Level of Analysis: Population: national

Type of Measure: Outcome

Data Source: Electronic adminstrative data/claims

Measure developer: Brandeis University/CMS

**Type of Endorsement (full or time-limited)**: Recommended for endorsement (Steering Committee— March 24, 2010 [Recommend composite measure—10; Do not recommend—5; Abstain—1])

# NATIONAL QUALITY FORUM National Voluntary Consensus Standards for Patient Outcomes Measure Summary

## Summary Table of TAP Ratings of Subcriteria and Comments:

| IMPORTANCE TO ME   | EASURE AND REP | PORT                                                                                                           |
|--------------------|----------------|----------------------------------------------------------------------------------------------------------------|
| 1d. Quality        | High           | No direct method for measuring transitions—idea of a composite                                                 |
| construct          |                | is appealing; are all 3 components needed? What is the                                                         |
| 1e. Conceptual     | Medium         | contribution of each component to the overall score? Including                                                 |
| construct          |                | the E&M measure that is "bidirectional," i.e., both positive and                                               |
|                    |                | negative, is conceptually difficult; Measure developer clarification                                           |
|                    |                | —for a hospital/system to do better on the composite they could                                                |
|                    |                | either reduce readmissions or increase E&M visits.                                                             |
|                    |                |                                                                                                                |
| SCIENTIFIC ACCEPTA | BILTY          |                                                                                                                |
| 2a. Specs          | High           | 2a—Specifications—complete.                                                                                    |
| 2b. Reliability    | High           |                                                                                                                |
| 2c. Validity       | High           | 2b and c—Reliability testing good; validity of the composite -                                                 |
| 2d. Exclusions     | High           | would be nice to compare to another data set like the NCDR.                                                    |
| 2e. Risk           | High           |                                                                                                                |
| adjustment         |                | 2f—Meaningful differences—testing data shows a reasonable                                                      |
| 2f. Meaningful     | High           | spread in results.                                                                                             |
| differences        |                |                                                                                                                |
| 2g. Comparability  | High           | 2h—Disparities known but not addressed.                                                                        |
| 2h. Disparities    | Not at all     | 2i Component justification correlations, ED and readmission                                                    |
| 2i. Component      | High           | 2i—Component justification—correlations: ED and readmission<br>negatively correlated to E&M visit.             |
| justification      |                |                                                                                                                |
| 2j. Component      | High           | 2k—Weightings are arbitrary—it seems empirically reasonable                                                    |
| variability        |                | and with experience can be adjusted.                                                                           |
| 2k. Differential   | Medium/low     | and with experience can be adjusted.                                                                           |
| weighting          |                |                                                                                                                |
| 21. Missing scores | High           |                                                                                                                |
| USEABILITY         | 1.             |                                                                                                                |
| 3a. Distinctive    | Low            | Unsure how to interpret results?                                                                               |
| 3b. Harmonization  | High           |                                                                                                                |
| 3c. Added value    | Medium         | 3a—How would you assign quintiles or stars? Is this structured in                                              |
| 3d. Decomposition  | High           | the best manner?                                                                                               |
| 3e. State purpose  | High           | 20 Distinctive from individual massaures but does it convert                                                   |
|                    |                | 3c — Distinctive from individual measures but does it convey                                                   |
|                    |                | meaningful summary information? Would need much<br>"merchandizing." Concept has good potential—not sure it was |
|                    |                | realized. Would the results provide important information for                                                  |
|                    |                | patient choice?                                                                                                |
| FEASIBILITY        | 1              |                                                                                                                |
|                    |                |                                                                                                                |

# NATIONAL QUALITY FORUM

# National Voluntary Consensus Standards for Patient Outcomes

Measure Summary

| 4a. Data a          | High | Scores high on feasibility. |
|---------------------|------|-----------------------------|
| byproduct of care   |      |                             |
| 4b. Electronic      | High |                             |
| 4c. Exclusions      | High |                             |
| 4d.                 | High |                             |
| Inaccuracies/errors |      |                             |
| 4e.                 | High |                             |
| Implementation      |      |                             |

## Measure Developer Responses:

| Topic, Measure #                   | Follow-Up Issu                                                                                                                                                                                                                                                                                                              | es                                         |                                                                                |                                                                               |                                                                                       |                                           |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------|
| and Title                          |                                                                                                                                                                                                                                                                                                                             |                                            |                                                                                |                                                                               |                                                                                       |                                           |
| Topic Area: AMI                    | Questions/Co                                                                                                                                                                                                                                                                                                                | nditic                                     | ons for Measure                                                                | Developer:                                                                    |                                                                                       |                                           |
|                                    |                                                                                                                                                                                                                                                                                                                             |                                            |                                                                                | •                                                                             | ot address me                                                                         | asuring disparities.                      |
| <b>Measure#</b><br>OT1-016-09      | 2. To better understand how the components and composite relate, could you make a table listing the results of each component and the composite for a sample of hospitals in each quintile of the composite results (ranked highest to lowest), such as:                                                                    |                                            |                                                                                |                                                                               |                                                                                       |                                           |
| Title:                             |                                                                                                                                                                                                                                                                                                                             |                                            | -                                                                              | 1                                                                             |                                                                                       |                                           |
| 30-Day post-                       |                                                                                                                                                                                                                                                                                                                             | Ν                                          | Readmission                                                                    | ED Visit                                                                      | E/M Visit                                                                             | Composite                                 |
| hospital acute                     | Hospital A                                                                                                                                                                                                                                                                                                                  |                                            |                                                                                |                                                                               |                                                                                       |                                           |
| myocardial                         | Hospital B                                                                                                                                                                                                                                                                                                                  |                                            |                                                                                |                                                                               |                                                                                       |                                           |
| infarction (AMI)<br>discharge care |                                                                                                                                                                                                                                                                                                                             |                                            |                                                                                |                                                                               |                                                                                       |                                           |
| transition<br>composite<br>measure | understanding                                                                                                                                                                                                                                                                                                               | how                                        | •                                                                              | es together                                                                   |                                                                                       | tremely helpful in<br>ding to the questio |
|                                    | <b>Response from Measure Developer:</b><br>1. This measure had not been evaluated prior to submission. Our recent<br>evaluation of the proposed measure has demonstrated that performance on the<br>composite measure is not systematically related to race (i.e., Black, White,<br>Hispanic) among Medicare beneficiaries. |                                            |                                                                                |                                                                               |                                                                                       |                                           |
|                                    | impact of indiv<br>(Sample of Cou<br>the relative im<br>of hospitals us<br>initially and a s                                                                                                                                                                                                                                | vidual<br>mpos<br>porta<br>ing co<br>sampl | measures on the<br>ite Scores With A<br>ince of each com<br>plor-coding. All h | e overall con<br>associated C<br>ponent with<br>ospitals wer<br>as then selec | mposite scores<br>omponent Sco<br>nin the HF com<br>re ranked by co<br>cted by taking | hospital number 2                         |

# NATIONAL QUALITY FORUM National Voluntary Consensus Standards for Patient Outcomes Measure Summary

| Topic, Measure #<br>and Title | Follow-Up Issues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | dark green, and the next highest quintile cells are light green. The cells of the<br>lowest quintile scores are dark red and the next to the bottom quintile cells are<br>light red. Within the quintile rank for the composite score we observe some<br>differences in rank for the individual component measures.<br>The attached document (Change in Rates Sufficient to Move Hospitals.doc)<br>simulates the impact of changes in individual component scores on the overall<br>composite score for a selected sample of five hospitals. Each hospital's composite<br>score and quintile category are functions of all individual measures and not overly<br>dependent on any single measure. As a result of differential measure weighting, a<br>relatively small change in readmission rate (0.4 to 1.0 percent) would move a<br>hospital into a higher or lower quintile. A larger change in the ED rate (0.8 to 2.0<br>percent) would be required for a hospital to move quintiles and an even larger<br>change in the E&M rate (1.7 to 4.0 percent) would be required. |

## Summary Table of SC Ratings of Subcriteria and Comments:

| IMPORTANCE TO MEASURE AND REPORT                                                                                                         |                       |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| The developer advised that the weightings were determined by the                                                                         | SC Vote on Importance |
| developers and their expert panel. While arbitrary, the weightings reflect the value of the desirable care trajectory for patients after | Yes—16                |
| hospitalization.                                                                                                                         | No-0                  |
| Some Committee members felt that only the readmission and ED                                                                             |                       |
| visit measures would be a better composite.                                                                                              |                       |
| SCIENTIFIC ACCEPTABILITY                                                                                                                 |                       |
| N/A                                                                                                                                      | SC Vote on Scientific |
|                                                                                                                                          | Acceptability         |
|                                                                                                                                          | Completely—4          |
|                                                                                                                                          | Partially-11          |
|                                                                                                                                          | Minimally—1           |

# NATIONAL QUALITY FORUM

# National Voluntary Consensus Standards for Patient Outcomes Measure Summary

|             | Not at all—0           |
|-------------|------------------------|
| USABILITY   |                        |
| N/A         | SC Vote on Usability   |
|             | Completely—6           |
|             | Partially—9            |
|             | Minimally—1            |
|             | Not at all—0           |
| FEASIBILITY |                        |
| N/A         | SC Vote on Feasibility |
|             | Completely—8           |
|             | Partially—8            |
|             | Minimally—0            |
|             | Not at all—0           |

# THE NATIONAL QUALITY FORUM

## COMPOSITE MEASURE SUBMISSION FORM Version 4.0 August 2009

This form will be used by stewards to submit <u>composite</u> measures and by reviewers to evaluate the measures.

**Measure Stewards:** Complete all <u>non-shaded</u> areas of the form. All requested information should be entered directly into this form. The information requested is directly related to NQF's <u>composite measure evaluation</u> <u>criteria</u> and will be used by reviewers to determine if the evaluation criteria have been met. The specific relevant subcriteria language is provided in a Word comment within the form and will appear if your cursor is over the highlighted area.

The measure steward has the opportunity to identify and present the information that demonstrates the measure meets the criteria. Additional materials will only be considered supplemental. Do not rely solely on materials provided at URLs or in attached documents to provide measure specifications or to demonstrate meeting the criteria. If supplemental materials are provided, be sure to indicate specific page numbers/ web page locations for the relevant information (web page links preferred).

For questions about this form, contact the project director at 202-783-1300. Please email this form to the appropriate contact listed in the corresponding call for measures.

**Reviewers:** Complete all yellow highlighted areas of the form. Evaluate the extent to which each subcriterion is met and then overall, the extent to which each major criterion is met. Provide the rationale for your rating.

Evaluation ratings of the extent to which the criteria are met H=High (unquestionably demonstrated to meet the criterion) M=Moderate (demonstrated to moderately meet the criterion) L=Low (addressed BUT demonstrated to only minimally meet the criterion) N=No (NOT addressed; OR incorrectly addressed; OR demonstrated to NOT meet the criterion) NA=Not applicable (only an option for a few subcriteria as indicated)

**Title of Measure:** 30-day Post-Hospital Acute Myocardial Infarction (AMI) Discharge Care Transition Composite Measure

Brief description of measure (*including type of score, measure focus, target population, time, e.g., Percentage of adult patients aged 18-75 years receiving one or more HbA1c tests per year*): This measure scores a hospital on the incidence among its patients during the month following discharge from an inpatient stay having a primary diagnosis of heart failure for three types of events: readmissions, ED visits and evaluation and management (E&M) services.

These events are relatively common, measurable using readily available administrative data, and associated with effective coordination of care after discharge. The input for this score is the result of measures for each of these three events that are being submitted concurrently under the Patient Outcomes Measures Phase I project's call for measures (ED and E&M) or is already approved by NQF (readmissions). Each of these individual measures is a risk-adjusted, standardized rate together with a percentile ranking. This composite measure is a weighted average of the deviations of the three risk-adjusted, standardized rates from the population mean for the measure across all patients in all hospitals. Again, the composite measure is accompanied by a percentile ranking to help with its interpretation.

► Type of Measure: ⊠ Composite

| Select the most relevant priority area(s), quality domain(s), and consumer need(s). |
|-------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------|

| National Priority Par | r <b>tners Priority Area </b> patient and f | amily engagement | population health | 🗌 safety |
|-----------------------|---------------------------------------------|------------------|-------------------|----------|
| 🔀 care coordination   | palliative and end of life care             | overuse          |                   |          |

|                                                 |               |            |                  |          | NQF Review #: |
|-------------------------------------------------|---------------|------------|------------------|----------|---------------|
| ► IOM Quality Domain _ effectiveness timeliness | Sefficiency   | equity     | patient-centered | 🗌 safety |               |
| ► Consumer Care Need  Getting Better            | r 🔀 Living Wi | th IIIness | Staying Healthy  |          |               |

| CONDITIONS FOR CONSIDERATION BY NQF                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Four conditions must be met before proposed measures may be considered and evaluated for suitability as voluntary consensus standards:                                                                                                                                                                                                                                                                                                                 | NQF<br>Staff    |
| A. The measure is in the public domain or an intellectual property agreement ( <u>measure steward agreement</u> ) is signed. <i>Public domain only applies to governmental organizations. All non-government organizations must sign a measure steward agreement even if measures are made publicly and freely available.</i>                                                                                                                          | А               |
| ► Do you attest that the measure steward holds intellectual property rights to the measure <u>and</u> the right to use any aspects of the measure owned by another entity (e.g., component measures, risk model, code set)? Xes                                                                                                                                                                                                                        | Y⊠<br>N□        |
| <ul> <li>Measure Steward Agreement</li> <li>Signed and Submitted OR Sovernment entity-public domain</li> <li>(If measure steward agreement not signed for non-government entities, do not submit)</li> </ul>                                                                                                                                                                                                                                           |                 |
| <ul> <li>Please check if either of the following apply:</li> <li>Proprietary Measure</li> <li>Proprietary Complex Measure w/fees</li> </ul>                                                                                                                                                                                                                                                                                                            |                 |
| B. The measure owner/steward verifies there is an identified responsible entity and process to maintain and update the measure on a schedule that is commensurate with the rate of clinical innovation, but at least every 3 years. $\square$ Yes (If no, do not submit)                                                                                                                                                                               | B<br>Y⊠<br>N□   |
| <ul> <li>C. The intended use of the measure includes <u>both</u> public reporting <u>and</u> quality improvement.</li> <li>▶ Purpose:  Public reporting  Internal quality improvement</li> <li>Accountability  Accreditation  Payment incentive  Other, describe:</li> <li>(If not intended for <u>both</u> public reporting <u>and</u> quality improvement, do not submit)</li> </ul>                                                                 | C<br>Y⊠<br>N□   |
| D. The requested measure submission information is complete. Generally, measures should be fully developed and tested so that all the evaluation criteria have been addressed and information needed to evaluate the measure is provided. Measures that have not been tested are only potentially eligible for a time-limited endorsement and in that case, measure owners must verify that testing will be completed within 24 months of endorsement. | D<br>Y⊠<br>N    |
| ► Testing: ∑ Fully developed and tested ☐ Testing will be completed within 24 months (If not tested and no plans for testing within 24 months, do not submit)                                                                                                                                                                                                                                                                                          |                 |
| Component Measures (All components of the composite must be either NQF-endorsed or submitted for consideration for NQF endorsement)<br>☐ All component measures are <u>NQF-endorsed</u> measures<br>⊠ <u>Some or all</u> component measures are <u>not NQF-endorsed</u> and have been submitted using the online measure submission tool                                                                                                               |                 |
| <ul> <li>Have NQF-endorsed measures been reviewed to identify if there are similar or related measures?</li> <li>Yes (If no, do not submit) If there are similar or related measures, be sure to address items 3b and 3c with specific information.</li> <li>Is all requested information entered into this form? Yes (If no, do not submit)</li> </ul>                                                                                                |                 |
| (for NQF staff use) Have <u>all</u> conditions for consideration been met?<br>Staff Notes (if submission returned):                                                                                                                                                                                                                                                                                                                                    | Met<br>Y⊠<br>N□ |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Review #:      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Extent to which the specific measure focus is important to making significant gains in health care quality (safety, timeliness, effectiveness, efficiency, equity, patient-centeredness) and improving health outcomes for a specific high impact aspect of healthcare where there is variation in or overall poor performance. <i>Measures must be judged to be important to measure and report in order to be evaluated against the remaining criteria.</i> (composite measure evaluation criteria)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| If the component measures are determined to meet the importance criteria 1a, 1b, and 1c, then the composite would meet 1a, 1b, and 1c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Eval           |
| (for NQF staff use) <u>Specific NPP goal</u> : Care Coordination: All healthcare organizations and their staff will work collaboratively with patients to reduce 30-day readmission rates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| <ul> <li>1d. Purpose/objective of the Composite</li> <li>▶ Describe the purpose/objective of the composite measure: Measurement that extends a hospital's performance from its inpatient setting to requisite outpatient delivery systems facilitates acknowledgement of shared accountability in achieving optimal patient outcomes and results in the active transfer of accountability for the patients' treatment. This application extends the precedent set by 30-day time intervals (for readmission rates) to include other important indicators or criteria for inferring better versus worse care coordination. NQF has identified transitions or "hand-offs" as the fifth domain in their definition and framework for measuring care coordination (NQF, 2006). Transitions between care settings involve multiple providers and patients with complex needs, resulting in care that is often unsafe, disconnected, and uncoordinated. Furthermore, pilot programs and evaluations of efforts to improve care transitions often use service utilization as signals or indicators or performance, and criteria for whether the intended improvements are realized (Brown et al., 2006; Coleman &amp; Berenson, 2004; Coleman, Parry, Chalmers, &amp; Min, 2006; DeJonge, Taler, &amp; Boling, 2009; Naylor, 2004; Naylor et al., 2004).</li> <li>Hospital readmissions are recognized as system failures at least in part (Jencks, 2009). Ultimately, a composite measure examining the care trajectories of Medicare beneficiaries with heart failure for the 30-days following hospital discharge would provide a more comprehensive picture of care provision during this critical window of time. Therefore, we examine the outcome of non-prescriptive, system-individualized and patient/family needs-based collaborative efforts to intervene appropriately with these high-risk patient cohorts at the lowest possible level of resource intensity. A hospital performance measure of E &amp; M follow-up on Medicare beneficiaries discharged following acute treatment for AMI may encourage hospitals to develop dischar</li></ul> |                |
| ► Describe the quality construct used in developing the composite: Having derived hospital-level risk-adjusted expected rates for E & M services, ED visits and readmissions following index hospitalizations for heart failure patients, we propose to combine these three measures into a weighted, post-hospital discharge care transition composite measure. If timely care transition is facilitated by the discharge hospital, one would expect to avoid preventable Emergency Department visits or readmissions to the hospital. As the E & M service is the link that presumably transfers physician accountability for treatment back to the primary care physician or specialist in the outpatient setting, the E & M service should be the first event observed following hospital discharge, and our proposed composite measure credits and weights positively such E & M services. Conversely, hospital readmissions and outpatient ED visits are considered negative events and weighted accordingly, as described below. Due to their implicit seriousness as well as high level of resource use, any readmission within 30 days following a hospital heart failure stay, identified by NOF-endorsed criteria, contributes negatively to our composite measure. An ED visit contributes, again negatively, if the Care within 30 days and prior to any readmission. An E & M service contributes, but positively, if the E & M service is the first service received following the index hospitalization during the time period. Risk adjusted predicted rates for E & M services, ED visits and hospitalizations are calculated for each hospital and compared with risk-adjusted expected rate (RSR) are combined into a composite rate using the weights of -4, -2, and 1 respectively to reflect the presumed relative seriousness of the three events. That is:                                                                                                                                                                                                                                                                     | 1d<br>H□⊠<br>I |

| Post-discharge care composite measure = -4*(RSR_RE - popaverage_RE) - 2*(RSR_ED - popaverage_ED) + 1*(RSR_EM-popaverage_EM).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| In addition, to help interpret the resulting measure values, the hospitals are also percentile ranked.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |
| <ul> <li>1e. Conceptual construct for quality</li> <li>▶ Describe how the component measures are consistent with and representative of the quality construct: The outcomes making up the composite measure, E&amp;M service, ED visits and hospital readmissions, represent increasing levels of resouce use to medically manage HF post-hospital discharge. These measures do not measure care transitions themselves or care coordination, but instead they represent the expectant result from improvement in such processes as evidenced by the numerous intervention programs and studies that utilize these measures as evidence of program/process effectiveness. If this composite is measured and reported, hospitals would be more motivated to develop the system-specific, needs-based processes unique to their inpatient-outpatient networks to provide the appropriate level of medical care at the right time and in the right setting. The proposed composite measure builds upon the previously endorsed measure for 30-day All-Cause Readmission following hospialization for AMI by incorporating two additional measures to differentiate hospital performance on the outcome of transitional care efforts.</li> </ul> | 1e<br>H⊠<br>M□<br>L□<br>N□ |
| <b>Staff Notes to Reviewers:</b> TAP comments on strengths and weakness of the measure: no direct method for measuring transitions - idea of a composite is appealing; Are all 3 components needed? What is the contribution of each component to the overall score? Including the E&M measure that is "bidirectional", i.e., both positive and negative, is conceptually difficult; Measure developer clarification - for a hospital/system to do better on the composite they could either reduce readmissions or increase E&M visits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
| <ul> <li>Reviewer: Was the threshold criterion, Importance to Measure and Report, met?<br/>Rationale:</li> <li>The developer advised that the weightings were determined by the developers and their expert panel. While arbitrary, the weightings reflect the value of the desirable care trajectory for patients after hospitalization.</li> <li>Some Committee members felt that only the readmission and ED visit measures would be a better composite.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>Y⊠                    |
| 2. SCIENTIFIC ACCEPTABILITY OF MEASURE PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N                          |
| Extent to which the measure, as specified, produces consistent (reliable) and credible (valid) results about the quality of care when implemented. (composite measure evaluation criteria)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Eval                       |
| 2a. MEASURE SPECIFICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |
| <ul> <li>In the future, NQF will require measure stewards to provide a URL link to a web page where current detailed specifications can be obtained?</li> <li>▶ Do you have a web page where current detailed measure specifications can be obtained?</li> <li>▶ If yes, provide web page URL: None</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |
| 2a. Precisely Specified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2a-<br>specs               |
| Components of the Composite (List the components, i.e., domains/sub-composites and individual measures)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
| ► List components: ( <i>If component measures <u>NQF-endorsed</u>, include NQF measure number</i> ; if <u>not NQF-endorsed</u> , provide date of submission to NQF)<br>30-day Post-Hospital AMI discharge evaluation and management measure, submitted to NQF on 9/18/2009;<br>30-day Post-Hospital AMI discharge ED measure, submitted to NQF on 9/18/2009; and,<br>Thirty-day all-cause risk standardized readmission rate following acute myocardial infarction (AMI)<br>hospitalization (NQF # 0505; endorsed 10/28/2008).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                          |

**Composite Numerator Statement:** The numerator is the weighted sum of the three deviations from their expected values for the individual measures comprising the component measure. The question of appropriate weights on the deviations is difficult and would probably lead to a wide variation in opinion. The weights of -4, -2, and 1 are selected to represent order of magnitude differences in seriousness of the three outcomes, which most would agree to (that is to say: readmission is more important than ED which is more important in a negative way than E & M service is in a positive way). The idea of not using weights was also considered, but this was noted to be itself a de facto weight scheme (with all weights the same), and as such, a weight scheme that was less appropriate than the one chosen.

Numerator Time Window: Each of the individual measures in the composite is computed annually (January through December), as a three year rolling average.

Numerator Details: The details on each individual measure comprising the component measure are provided in their submission for NQF approval.

**Composite Denominator Statement:** N/A The composite measure is the weighted sum of three individual measures. Thus, the denominator is one.

Denominator Time Window: N/A

Denominator Details: N/A

Composite Denominator Exclusions: N/A

Denominator Exclusion Details: N/A

► Type of Score: Weighted score/comosite/scale ► If "Other", please describe:

Interpretation of Score (Classifies interpretation of score according to whether better quality is associated with a higher score, a lower score, a score falling within a defined interval, or a passing score)
 Better quality = Higher score
 If "Other", please describe:

Method of Scoring/Aggregation: other If "other" scoring method, describe: Weighted sum of components, where each component is a deviation from an expected value.

Missing Component Scores (Indicate how missing component scores are handled): NA

Weighting: Equal  $\boxtimes$  Differential If differential weighting, describe: Readmission measure = -4\* (RSR-popaverage); ED measure = -2\*(RSR-popaverage); E&M measure = 1\*(RSR-popaverage)

► Calculation Algorithm (*Describe the calculation of the measure as a flowchart or series of steps*): Calculation Algorithm for 30-day Hospital Discharge AMI Care Transition Composite measure:

Step 1: Claims for all beneficiaries (regardless of clinical condition) from 2003-2007 Medicare Inpatient files were combined and cleaned to create a claims file with one claim per inpatient per provider stay. Next, a single-stay claims file for all beneficiaries (regardless of clinical condition) in which transfer claims are combined into a single inpatient stay record was created. This process is described in the "Input File Processing for 2009 CMS 30-day Mortality and Readmission Measures" documentation.

Step 2: Each stay in the five year period is then defined as either an index admission or a 30-day readmission. A single stay cannot count as both an index admission and a readmission for another index admission. Thus, additional admissions within 30-days of an index admission are not counted as index admissions. Index admissions with a qualifying primary discharge diagnosis from beneficiaries meeting the inclusion criteria were included in this measure. This process is described in the Hospital 30-Day PNA Readmission Measure Methodology submitted by YNHH-CORE, the Hospital 30-Day Acute Myocardial Infarction Readmission Measure Methodology submitted by YNHH-CORE, and the Hospital 30-Day Heart Failure Readmission Measure Methodology submitted by YNHH-CORE.

Step 3: For each qualifying index admission, the beneficiary's inpatient and outpatient claims in the 12months prior to the hospitalization are examined. All diagnoses from non-DME, non-diagnostic testing claims are used to construct flags for 184 clinical Condition Categories (CCs). Secondary diagnoses (excluding diagnoses associated with potential complications) from the index admission are used also to assign the 184 CCs. The process for creating the CC flags is described in the RiskSmart Stand Alone Users Guide, v2.2. These flags are used for risk adjustment.

Step 4: The following three flags (0/1 indicators) are then set for each index admission.

• Readmission=1 if a subsequent readmission occurs within 30 days of discharge from the qualifying index admission

• ED visit=1 if an ED visit occurs in the 30 days after discharge from the index admission, and the ED visit is not associated with or after the first readmission.

• E&M service=1 if an E&M service occurs in the 30 days after discharge from the index admission, and the E&M service is not after the first readmission, and is not after the first ED visit.

#### Step 5:

• Calculate separately (a) the ratio of E&M service=1 events, (b) the ratio of ED visit=1 events, and (c) the ratio of Readmission=1 events over the total number of qualifying index admissions to get unadjusted E&M, ED visit, and Readmission rates, respectively. These ratios are for descriptive purposes only.

#### Step 6:

• Estimate separately risk adjustment regression models on (a) the E&M service indicator, (b) the ED visit indicator, and (c) the readmission indicator using the methodology developed for the CMS 30-day all cause readmission measure.

Step 7: Applying the CMS 30-day readmission measure methodology, compute separately the P/E ratio and corresponding risk standardized rates (the RSR is defined as P/E times overall population mean) for E&M service, ED visit, and readmission. It must be understood that the RSR for E&M services greater than expected (popavg) indicates better than anticipated performance, while RSR for ED visits and readmissions greater than expected indicates lower than anticipated performance. This explains why weights for E&M service deviation is positive (+1), while weights for ED visits and readmissions components are negative (-2

| category), as well as the amount of significant differe hopefully, categories can be constructed to have signi Sampling (Survey) Methodology <i>If measure is based</i>                                                                                                  | urther, but as there are meaningful differences in<br>onstruct categories from the composite that reflect<br>is we'll examine two approaches: one grouping<br>, three categories for 1) hospitals significantly lower<br>from mean, and 3) hospitals significantly higher than<br>ks, for example, using quintiles as categories. The<br>n hospital categorization (i.e., many hospitals in each<br>nces among hospitals of different categories (i.e.,<br>ficant differences among their means). |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| <ul> <li>obtaining the sample, conducting the survey and guid<br/>N/A</li> <li>Stratification Details/Variables (All information reduction of the survey and definition)</li> </ul>                                                                                      | quired to stratify the measure including the                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| stratification variables, all codes, logic, and definition N/A                                                                                                                                                                                                           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| Data Source Check all the source(s) used in the con                                                                                                                                                                                                                      | nponent measures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| <ul> <li>Electronic administrative data/ claims</li> <li>Electronic Health/Medical Record</li> <li>Electronic Clinical Data (e.g., MDS)</li> <li>Registry data (or database)</li> <li>Lab data</li> <li>Pharmacy data</li> <li>Paper Medical Record/flowsheet</li> </ul> | <ul> <li>Survey-patient (e.g., CAHPS)</li> <li>Survey-provider</li> <li>Documentation of original self-assessment (e.g., SF-36)</li> <li>Management data</li> <li>Public health data/vital statistics</li> <li>Special or unique data, specify:</li> </ul>                                                                                                                                                                                                                                        |          |
| ► Level of Measurement/Analysis (For what entity w<br>Check the level(s) for which the measure is specified                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| Clinician: Individual Group Other<br>Facility/Agency (e.g., hospital, nursing home)<br>Multi-site/corporate chain<br>Integrated delivery system<br>Health plan<br>Prescription drug plan                                                                                 | Program: Disease management QIO<br>Other<br>Population: National Regional/network<br>State Counties/Cities<br>Other ( <i>Please describe</i> ):<br>All levels                                                                                                                                                                                                                                                                                                                                     |          |
| ► Applicable Care Settings<br>Check the setting(s) for which the measure is specifie<br>Ambulatory Care: Amb Surgery Center Office                                                                                                                                       | ed and tested.<br>Clinic Emergency Dept Hospital Outpatient                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| <ul> <li>Assisted Living</li> <li>Behavioral health/psychiatric unit</li> <li>Dialysis Facility</li> <li>Emergency medical services/ambulance</li> <li>Group Home</li> <li>Home</li> <li>Hospice</li> </ul>                                                              | <ul> <li>Hospital</li> <li>Long term acute care hospital</li> <li>Nursing home/ Skilled Nursing Facility (SNF)</li> <li>Rehabilitation Facility</li> <li>Other (<i>Please describe</i>):</li> <li>Unspecified or "not applicable"</li> <li>All settings</li> </ul>                                                                                                                                                                                                                                |          |
| TESTING/                                                                                                                                                                                                                                                                 | 'ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| 2i. Component item/measure analysis to justify inclu-                                                                                                                                                                                                                    | usion in composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| <b>Data/sample:</b> The testing analyses described in this see of Medicare Carrier Claim files for 2003-2007. Analysi having 10 or more AMI index admissions in 2006. This and 99,645 for the three year period 2004-2006.                                               | s used only AMI index admissions to the 1,131 hospitals                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2i<br>H⊠ |
| Analytic Method: Calculate correlation between the p<br>subgroups of measures                                                                                                                                                                                            | positive subgroup and the reverse of the negative                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |

| <b>Testing Results:</b> We found that the Pearson correlation coefficient between component for E&M service within 30 days and the sum of the components for readmission and ambulatory ED visit was approximately 0.260 to 0.330 (p<.001), depending on method of formulating the individual components (e.g., one-year versus three-year). This implied that the positive component (E&M service) and the reverse of the negative components (formed by combining ED visits with readmissions) can be used together to form a useful composite.        |                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 2j. Component item/measure analysis of contribution to variability in composite score                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| <b>Data/sample:</b> The testing analyses described in this section use data from the Dartmouth Atlas 20% sample of Medicare Carrier Claim files for 2003-2007. Analysis used only AMI index admissions to the 1,131 hospitals having 10 or more AMI index admissions in 2006. This sub-sample has 31,652 AMI index admissions for 2006 and 99,645 for the three year period 2004-2006.                                                                                                                                                                   |                            |
| Analytic Method: Correlation of each of the three component measures with the composite measure.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |
| <b>Testing Results:</b> Correlations between each component and the overall composite measure were very strong (p<.001). For the predicted over expected composite measure based on three year rolling average, the correlations .775 with the readmission component, .336 with the ED visit component, and .685 with the E&M service component. For the one year composite measure (based on 2007 data), it was similarly strong - readmission component correlated at .759, ED visit correlated at .285, and E&M service component correlated at .759. | 2j<br>H⊠<br>M□<br>L□<br>N□ |
| 2k. Analysis to support differential weighting of component scores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |
| Data/sample: N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |
| Analytic Method: N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
| Testing Results: N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
| Describe how the method of scoring/aggregation achieves the stated purpose and represents the quality construct: The question of appropriate weights on the deviations is difficult and would probably lead to a wide variation in opinion. The weights of -4, -2, and 1 are selected to represent order of magnitude differences in seriousness of the three outcomes, which most would agree to (that is to say: readmission is more important than ED which is more important in a negative way than E & M service is in a positive way).             | 2k<br>H□                   |
| Indicate if any alternative scoring/aggregation methods were tested and why not chosen: The idea of not using weights was also considered, but this was noted to be itself a de facto weight scheme (with all weights the same), and as such, a weight scheme that was less appropriate than the one chosen.                                                                                                                                                                                                                                             |                            |
| 21. Analysis of missing component scores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |
| Data/sample: Claims from 2004 through 2007 100% Medicare Inpatient SAF Files; 2004 through 2007 100% Medicare Outpatient SAF Files; 20 % sample of 2004 through 2007 Medicare Carrier Files                                                                                                                                                                                                                                                                                                                                                              | 2I                         |
| Analytic Method: search of data summaries for components with zero or low number of AMI admissions                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |
| Testing Results: Components are present or absent uniformly for all hospitals in our AMI dataset.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |
| 2b. Reliability testing of composite score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |
| ► Data/sample (description of data/sample and size): The testing analyses described in this section use data from the Dartmouth Atlas 20% sample of Medicare Carrier Claim files for 2003-2007. Analysis used only AMI index admissions to the 1,131 hospitals having 10 or more AMI index admissions in 2006. This sub-sample has 31,652 AMI index admissions for 2006 and 99,645 for the three year period 2004-2006.                                                                                                                                  | 2b<br>H⊠<br>M⊡             |
| ► Analytic Method (type of reliability & rationale, method for testing): Reliability was examined two ways: through correlation of measure with its one year incremental change, and through division into quintiles and                                                                                                                                                                                                                                                                                                                                 |                            |

| NQF F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Review #:                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| calculating weighted kappa statistics. Both Pearson and Spearman (rank) correlations were computed between 2007 and average of first three years (2004 through 2006). This is a more stringent test than the straightforward test of correlating 2007 measures (based on three year rolling averages from 2005-2007) with 2006 measures (based on three year rolling averages from 2004-2006). The latter would share 2/3 of the data and have an inflated correlation as a result.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| ► Testing Results (reliability statistics, assessment of adequacy in the context of norms for the test conducted): The Pearson correlation between 2007 and three year averages (using 2004- 2006) for predicted over expected was .234 (p<0.001) For comparison purposes, the observed over expected composites had a .068 (p=0.022) correlation. The Spearman correlation (which are less sensitive to outliers) was similar: 0.213 (p<0.001) for predicted over expected and 0.062 (p=0.037) for corresponding observed over expected composites. Weighted kappas measuring agreement within quintiles showed a similar pattern of reliability. Weighted kappa was 0.129 (p<0.001) for 2007 predicted over expected compared with prior composite measure based on three year rolling average. The 95% CI for this weighted kappa was (0.088, 0.169).                                                                                                                                                                                                           |                            |
| 2c. Validity testing of composite score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |
| ► Data/sample (description of data/sample and size): The testing analyses described in this section use data from the Dartmouth Atlas 20% sample of Medicare Carrier Claim files for 2003-2007. Analysis used only AMI index admissions to the 1,131 hospitals having 10 or more AMI index admissions in 2006. This sub-sample has 31,652 AMI index admissions for 2006 and 99,645 for the three year period 2004-2006.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |
| ► Analytic Method (type of validity & rationale, method for testing): N/A yet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |
| ► Testing Results (statistical results, assessment of adequacy in the context of norms for the test conducted): As a weighted sum of three measures, the validity of this composite depends greatly on the validity of the three components. We hope to further test this validity through construct validation, predictive validation, and other analyses as follow-up to this submission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2c<br>H⊠<br>M□<br>L□<br>N□ |
| 2f. Identification of Meaningful Differences in Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |
| ► Data/sample from Testing or Current Use (description of data/sample and size): The testing analyses described in this section use data from the Dartmouth Atlas 20% sample of Medicare Carrier Claim files for 2003-2007. Analysis used only AMI index admissions to the 1,131 hospitals having 10 or more AMI index admissions in 2006. This sub-sample has 31,652 AMI index admissions for 2006 and 99,645 for the three year period 2004-2006.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| ► Methods to identify statistically significant and practically/meaningfully differences in performance (type of analysis & rationale): For more appropriate interpretation, the composite measure, which is a weighted sum, can be standardized by dividing by 7 (the sum of the weights). This standardization implies that when all component measure deviations are equal (e.g. 1%), the resulting standardized composite score will have this same common value (e.g., again 1%).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
| This composite is not yet used. We are submitting it for provisional acceptance with the plan over the next few months tol explore this issue further. As there are meaningful differences in each of its components, we assume we'll be able to construct categories from the composite that reflect meaningful differences as well. As part of this analysis we'll examine two approaches: one grouping hospitals together based on significance - for example, three categories for 1) hospitals significantly lower than mean, 2) hospitals with no significant difference from mean, and 3) hospitals significantly higher than mean) and a second approach based on percentile ranks, for example, using quintiles as categories. The final selection will maximize the amount of variation in hospital categorization (i.e., many hospitals in each category), as well as the amount of significant differences among hospitals of different categories (i.e., hopefully, categories can be constructed to have significant differences among their means). |                            |
| ▶ Provide Measure Scores from Testing or Current Use (description of scores, e.g., distribution by quartile, mean, median, SD, etc.; identification of statistically significant and meaningfully differences in performance): With scaling as described above, the composite's 5th percentile is -2.0% (indicating each deviation of these lowest performing hospitals averages -2.0%) and the 95th percentile is 1.9% (indicating each deviation of these highest performing hospitals averages 1.9%). Under the same scaling, the inter-quartile range for the composite is -0.7% to 0.9%., or 1.6 percentage points. By way of context, the inter-                                                                                                                                                                                                                                                                                                                                                                                                             | 2f<br>H⊠<br>L□<br>N□       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9                          |

| NQF I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Review #:           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| quartile range of the readmission rate component calculated for this analysis (see Table 7 (page 17) in Attachemt B of the supporting document) is 2 percentage points.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| the composite's 5th percentile is -2.0% (indicating each deviation of these lowest performing hospitals averages -2.0%) and the 95th percentile is 1.9% (indicating each deviation of these highest performing hospitals averages 1.9%). Under the same scaling, the inter-quartile range for the composite is -0.7% to 0.9%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| 2h. Disparities in Care                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| ► If measure is stratified, provide stratified results (scores by stratified categories/cohorts):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2h<br>H∏            |
| ► If disparities have been reported/identified, but measure is not specified to detect disparities,<br>provide follow-up plans: We are currently examining hospital quality measures related to disparities for<br>CMS and we can add these measures to see how they break out by race/ethnicity, SES, etc. We had<br>intended the further exploration of measure performance as related to special populations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| <b>Staff Notes to Reviewers:</b> TAP comments on strenths and weknesses: 2a. specifications - complete; 2b and c - reliability testing good; validity of the composite - would be nice to compare to another data set like the NCDR; 2f - meaningful differences - testing data shows a reasonable spead in results 2h - disparities known but not addressed; 2i - component justification correlations: ED and readmission negatively correlated to E&M visit; 2k - weightings are arbitrary- it seems empirically reasonable and with experience can be adjusted;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
| Reviewers: Overall, to what extent was the criterion, <i>Scientific Acceptability of Measure Properties</i> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                   |
| met?<br>Rationale:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H<br>M<br>L<br>N    |
| met?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H□<br>M⊠<br>L□      |
| met?<br>Rationale:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H□<br>M⊠<br>L□      |
| met?         Rationale:         3. USABILITY         Extent to which intended audiences (e.g., consumers, purchasers, providers, policy makers) can understand the results of the measure and are likely to find them useful for decision making.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| met?         Rationale:         3. USABILITY         Extent to which intended audiences (e.g., consumers, purchasers, providers, policy makers) can understand the results of the measure and are likely to find them useful for decision making. (composite measure evaluation criteria)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
| met?         Rationale:         3. USABILITY         Extent to which intended audiences (e.g., consumers, purchasers, providers, policy makers) can understand the results of the measure and are likely to find them useful for decision making. (composite measure evaluation criteria)         3a. Meaningful, Understandable, and Useful Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| met?         Rationale:         3. USABILITY         Extent to which intended audiences (e.g., consumers, purchasers, providers, policy makers) can understand the results of the measure and are likely to find them useful for decision making. (composite measure evaluation criteria)         3a. Meaningful, Understandable, and Useful Information         Current Use:       In use         Not in use, but testing completed       X Testing not yet completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| met?         Rationale:         3. USABILITY         Extent to which intended audiences (e.g., consumers, purchasers, providers, policy makers) can understand the results of the measure and are likely to find them useful for decision making. (composite measure evaluation criteria)         3a. Meaningful, Understandable, and Useful Information         Current Use:       In use         Not in use, but testing completed       Testing not yet completed         If used in a public reporting initiative, Name of initiative(s), locations, Web page URL(s): N/A         If used in other programs/initiatives (e.g., quality improvement), Name of initiative(s), locations, web                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| met?         Rationale:         3. USABILITY         Extent to which intended audiences (e.g., consumers, purchasers, providers, policy makers) can understand the results of the measure and are likely to find them useful for decision making. (composite measure evaluation criteria)         3a. Meaningful, Understandable, and Useful Information         Current Use:       In use         Not in use, but testing completed       Testing not yet completed         If used in a public reporting initiative, Name of initiative(s), locations, Web page URL(s): N/A         If used in other programs/initiatives (e.g., quality improvement), Name of initiative(s), locations, web page URL(s): N/A         Testing of Interpretability       (Testing that demonstrates the results are understood by the potential users                                                                                                                                                                                                                                                                                                                              | H<br>L<br>N<br>Eval |
| met?         Rationale:         3. USABILITY         Extent to which intended audiences (e.g., consumers, purchasers, providers, policy makers) can understand the results of the measure and are likely to find them useful for decision making. (composite measure evaluation criteria)         3a. Meaningful, Understandable, and Useful Information         Current Use:       In use       Not in use, but testing completed       Testing not yet completed         If used in a public reporting initiative, Name of initiative(s), locations, Web page URL(s): N/A       If used in other programs/initiatives (e.g., quality improvement), Name of initiative(s), locations, web page URL(s): N/A         Testing of Interpretability       (Testing that demonstrates the results are understood by the potential users for public reporting and quality improvement)         Data/sample (description of data/sample and size): Measure has not yet been tested; requesting provisional approval to continue the formal testing including consumer interpretation of the 30-day Post-                                                                   | H<br>L<br>N<br>Eval |
| met?         Rationale:         3. USABILITY         Extent to which intended audiences (e.g., consumers, purchasers, providers, policy makers) can understand the results of the measure and are likely to find them useful for decision making. (composite measure evaluation criteria)         3a. Meaningful, Understandable, and Useful Information         Current Use:       In use       Not in use, but testing completed       Testing not yet completed         If used in a public reporting initiative, Name of initiative(s), locations, Web page URL(s): N/A       If used in other programs/initiatives (e.g., quality improvement), Name of initiative(s), locations, web page URL(s): N/A         Testing of Interpretability       (Testing that demonstrates the results are understood by the potential users for public reporting and quality improvement)         > Data/sample (description of data/sample and size): Measure has not yet been tested; requesting provisional approval to continue the formal testing including consumer interpretation of the 30-day Posthospital AMI Discharge Evaluation and Management Service measure. | H<br>L<br>N<br>Eval |

| NQF F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Review #:                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Other measures for same target population 🛛 Other measures on same topic 🗌 No similar measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |
| NQF # and Title of similar or related measures: Thirty-day all-cause risk standardized readmission rate following acute myocardial infarction (AMI) hospitalization (NQF # 0505; endorsed 10/28/2008).                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |
| Describe the distinctive or additive value this measure provides to existing NQF-endorsed measures:<br>Adds two additional components to an exisiting readmission rate measure in building a composite measure of transitional care post-<br>hospital discharge                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |
| 3b. Harmonization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3b                                |
| ► Are the component measure specifications harmonized, or if not, why? yes; employed the diagnositic coding specification for population cohorts and the risk-adjustment methodology of the currently NQF-endorsed hospital 30-day PNA, Heart Failure and AMI readmission rates (developed by Yale researchers)                                                                                                                                                                                                                                                                                                                                                 | HX<br>M<br>L<br>N<br>NA           |
| 3c. Distinctive or Additive Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| Describe the distinctive, improved, or additive value this measure provides to existing NQF-endorsed measures:<br>It builds upon the foundation of the NQF-endorsed 30-day PNA, Heart Failure, and AMI readmission rates providing a more comprehensive picture of transitional care and resource use immediately post-discharge for a frequent and high-cost condition in the Medicare population.                                                                                                                                                                                                                                                             | 3c<br>H□<br>M□<br>L□<br>N□<br>NA□ |
| <ul> <li>3d. Decomposition of Composite</li> <li>▶ Describe the information from decomposing the composite into its components that is available:</li> <li>1) Thirty-day all-cause risk standardized readmission rate following acute myocardial infarction (AMI) hospitalization (NQF # 0505; endorsed 10/28/2008).</li> <li>2) 30-day Post-hospital AMI discharge ED visit rate</li> <li>3) 30-day Post-hospital AMI discharge evaluation and management service rate</li> </ul>                                                                                                                                                                              | 3d<br>H⊠<br>M□<br>L□<br>N□        |
| 3e. Achieved stated purpose<br>Describe how the results reported above demonstrate that the composite achieves the stated purpose:<br>Ideal care following hospitalization for AMI is evidence of an evaluation and management (E & M)services<br>visit that presumably links the inpatient care back to the outpatient setting thereby transferring physician<br>accountability for treatment from the hospitalist or hospital physician to the primary care physician or<br>specialist. If the discharged patient required an Emergency Department visit or readmission prior to this E<br>& M it can be inferred that optimal care transition did not occur. | 3e<br>H⊠<br>M□<br>L□<br>N□        |
| Staff Notes to Reviewers (including additions/changes to related or similar measures): TAP comments on strengths and weaknesses: Unsure how to interpret results. 3a. How would you assign quintiles or stars? Is this structured in the best manner? 3c - Distinctive from individual measures but does it convey meaningful summary information? Would need much "merchandizing". Concept has good potential not sure it was realized. Would the results provide important information for patient choice?                                                                                                                                                    |                                   |
| Steering Committee/TAP: Overall, to what extent was the criterion, Usability, met?<br>Rationale:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3<br>H<br>M<br>M<br>L<br>N        |
| 4. FEASIBILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |
| Extent to which the required data are readily available, retrievable without undue burden, and can be implemented for performance measurement. (composite measure evaluation criteria)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Eval                              |
| 4a. Data Generated as a Byproduct of Care Processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4a                                |
| How are <u>all</u> the data elements that are needed to compute measure scores generated? <i>Check all that apply</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H⊠<br>M□<br>L□                    |
| Data are generated as a byproduct of care processes during care delivery (Data are generated and used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N                                 |

| by healthcare personnel during the provision of care, e.g., blood pressure, lab value, medical condition)<br>Coding/abstraction performed by someone other than person obtaining original information (e.g., DRG,<br>ICD-9 codes on claims; chart abstraction for quality measure, registry)<br>Other (e.g., patient experience of care surveys, provider surveys, observation), Please describe:                                                | NA                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 4b. Electronic Sources                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
| ► Are <u>all</u> the data elements available electronically? ( <i>elements that are needed to compute measure scores are in defined, computer-readable fields, e.g., electronic health record, electronic claims</i> ) ✓ Yes No                                                                                                                                                                                                                  |                            |
| ▶ If no, specify the near-term path to achieve electronic capture by most providers.                                                                                                                                                                                                                                                                                                                                                             | 4b<br>H⊠                   |
| Note: Measure stewards will be asked to specify the data elements for electronic health records at a<br>later date                                                                                                                                                                                                                                                                                                                               | M<br>L<br>N                |
| 4d. Susceptibility to Inaccuracies, Errors, or Unintended Consequences                                                                                                                                                                                                                                                                                                                                                                           | 4d                         |
| Identify susceptibility to inaccuracies, errors, or unintended consequences of the measure and describe how these potential problems could be audited. If audited, provide results. Our measure as specified is not susceptible to inaccuracies.                                                                                                                                                                                                 | H⊠<br>M□<br>L□<br>N□       |
| 4e. Data Collection Strategy/Implementation                                                                                                                                                                                                                                                                                                                                                                                                      |                            |
| ► Describe what you have learned/modified as a result of testing and/or operational use of the composite/component measures regarding data collection, availability of data/missing data, timing/frequency of data collection, patient confidentiality, time/cost of data collection, other feasibility/ implementation issues:<br>As a completely claims-based measure once measure specification has been coded it is not difficult to derive. |                            |
| <ul> <li>Costs to implement the measure (costs of data collection, fees associated with proprietary measures):<br/>NA-this is an administrative claims-based measure that does not add data collection burden to hospitals or<br/>providers</li> <li>Evidence for costs: N/A</li> <li>Business case documentation: N/A</li> </ul>                                                                                                                | 4e<br>H⊠<br>M□<br>L□<br>N□ |
| Staff Notes to Reviewers: TAP comments of strengths and weaknesses: scores high on feasibility                                                                                                                                                                                                                                                                                                                                                   |                            |
| Reviewers: Overall, to what extent was the criterion, Feasibility, met?<br>Rationale:                                                                                                                                                                                                                                                                                                                                                            | 4<br>H<br>M⊠<br>L<br>N     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |
| Reviewers: Overall, to what extent were all the criteria met?<br>Rationale:                                                                                                                                                                                                                                                                                                                                                                      | H<br>M<br>L                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |
| Steering Committee only         Recommendation:       Endorsement         Time-limited endorsement       Do not recommend         Conditions:       No         Yes, Specify:                                                                                                                                                                                                                                                                     |                            |
| CONTACT INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |
| Measure Steward (Intellectual Property Owner)<br>Organization: Centers for Medicare and Medicaid Services<br>Street Address: City: Washington D.C. State: ZIP: 21244                                                                                                                                                                                                                                                                             |                            |

| Point of Contact; First Name: Shaheen MI: Last Name: Halim Credentials (MD, MPH, etc.): Ph.D.         Email: shaheen.halim@cms.hhs.gov Telephone: 401-786-0644 ext:         Measure Developer If different from Measure Steward         Organization: Brandels University         Street Address: 415 South Street City: Waltham State: MA ZIP: 02454-9110         Deint of Contact; First Name: Christopher MI: Last Name: Tompkins Credentials (MD, MPH, etc.): Ph.D.         Email: tompkins@brandels.edu. Telephone: 781-736-3913 ext:         Submitter If different from Measure Steward Point of Contact         First Name: Christopher MI: Last Name: Credentials (MD, MPH, etc.): Ph.D.         Email: tompkins@brandels.edu. Telephone: 781-736-3913 ext:         Organization:       Measure Developer         Additional Measure Steward       XMeasure Developer         Additional Measure Developer Organizations:       ADDITIONAL INFORMATION         Workgroup/Expert Panel involved in measure development       > Provide a list of sponsoring organizations and workgroup/panel members' names and organizations.         > Describe the members' role in measure development.       > Technical Expert Panel (TEP):         Lisa Latis. MO. MBA -WellPoint       Julie Bynum, MD, MPH -Dartment of Headth - Chronic Disease and Cancer Community Health Administration         Anthony Armada, MIA, MBA -Henry Ford Hospital       TEP Role:         The Technical Expert Panel assisted our workgroup developing measures by providing input                                                     | NQF Rev                                                                                                                                                                                                                                                                                                                                                                                   | iew |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Organization: Brandels University         Street Address: 415 South Street City: Waltham State: MA ZIP: 02454-9110         Point of Contact: First Name: Christopher MI: Last Name: Tompkins Credentials (MD, MPH, etc.): Ph.D.         Email: tompkinsebrandels.edu. Telephone: 781-736-3913 ext:         Submitter If different from Measure Steward Point of Contact         First Name: Christopher MI: Last Name: Tompkins Credentials (MD, MPH, etc.): Ph.D.         Email: tompkinsebrandels.edu Telephone: 781-736-3913 ext:         Organization:       Measure Steward         Additional Measure Developer Organizations:         Mobility       ADDITIONAL INFORMATION         Workgroup/Expert Panel Involved in measure development         > Provide a list of sponsoring organizations and workgroup/panel members' names and organizations.         > Describe the members' role in measure development.         Technical Expert Panel (TEP):         Lisa Latts, MD, MBA -WellPoint         Julie Bynum, MD. MPH -Dartimouth Medical School         Joanne Lynn, MD - OC Department of Health - Chronic Disease         and Cancer Community Health Administration         Anthony Armada, MHA, MBA -Henry Ford Hospital         TEP Role:         The Technical Expert Panel assisted our workgroup developing measures by providing input to:         • Supplement; and providing input on draft measures and measure development testing.         • Discus                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                           |     |
| Email: tompkins@brandeis.edu. Telephone: 781-736-3913 ext:         Submitter If different from Measure Steward Point of Contact         First Name: Christopher MI:       Last Name: Tompkins Credentials (MD, MPH, etc.): Ph.D.         Email: tompkins@brandeis.edu Telephone: 781-736-3913 ext:       Organization:         Additional Measure Developer Organizations:       Measure Developer         Additional Keasure Developer Organizations and workgroup/panel members' names and organizations.       No         > Provide a list of sponsoring organizations and workgroup/panel members' names and organizations.       > Describe the members' role in measure development.         Technical Expert Panel (TEP):       List atts, MO, MBA -WellPoint         Julie Bynum, MD, MPH - Dartmonth Medical School       Joanne Lynn, MD - DC Department of Health - Chronic Disease         and Cancer Community Health Administration       Anthony Armada, MHA, MBA - Henry Ford Hospital         TEP Role:       The Technical Expert Panel assisted our workgroup developing measures by providing input to:         • Supplement, and provide texture, to the knowledge gathered through the literature review prior to measu development:         • Discussing existing measures and providing input as to next steps for CMS to adopt, adapt, and/or develop measures of care coordination relevant to the hospital setting: and         • Reviewing and providing input on draft measures and measure development testing.         Workgroup       Kristine Martin Anderson, MBA -Booz Allen Hamilton | zation: Brandeis University                                                                                                                                                                                                                                                                                                                                                               |     |
| First Name: Christopher MI:       Last Name: Tompkins Credentials (MD, MPH, etc.): Ph.D.         Email: tompkins@brandeis.edu Telephone: 781-736-3913 ext:       Organization:         Measure Developer Organizations:         Additional Measure Developer Organizations:         Mostry Developer Organization:         Provide a list of sponsoring organizations and workgroup/panel members' names and organizations.         > Describe the members' role in measure development.         Technical Expert Panel (TEP):         List Atts, MD, MBA -WellPoint         Julie Bynum, MD, PMP - Dartmouth Medical School         Joanne Lynn, MD -DC Department of Health - Chronic Disease         and Cancer Community Health Administration         Anthony Armada, MHA, MBA -Henry Ford Hospital         TEP Role:         The Technical Expert Panel assisted our workgroup developing measures by providing input to:         •       Supplement, and provide texture, to the knowledge gathered through the literature review prior to measu development:         •       Discussing existing measures and providing input as to next steps for CMS to adopt, adapt, and/or develop measures of care coordination relevant to the hospital setting; and         •       Reviewing and providing input on draft measures and measure development testing.         Workgroup       Kristine Martin Anderson, MBA -Booz Allen Hamilton Sandra Lesik, MD-Booz Allen Hamilton Sandra Lesik, MD-Boston University Gary Young, MD-Boston Univers                                                                     |                                                                                                                                                                                                                                                                                                                                                                                           |     |
| ADDITIONAL INFORMATION         Workgroup/Expert Panel involved in measure development         > Provide a list of sponsoring organizations and workgroup/panel members' names and organizations.         > Describe the members' role in measure development.         Technical Expert Panel (TEP):         Lisa Latts, MD, MBA -WeilPoint         Julie Bynum, MD, MPH -Dartmouth Medical School         Joanne Lynn, MD - DC Department of Health - Chronic Disease         and Cancer Community Health Administration         Anthony Armada, MHA, MBA -Henry Ford Hospital         TEP Role:         The Technical Expert Panel assisted our workgroup developing measures by providing input to:         •       Supplement, and provide texture, to the knowledge gathered through the literature review prior to measure development:         •       Discussing existing measures and providing input as to next steps for CMS to adopt, adapt, and/or develop measures of care coordination relevant to the hospital setting: and         •       Reviewing and providing input on draft measures and measure development testing.         Workgroup       Kristine Martin Anderson, MBA -Booz Allen Hamilton Sandra Lesikar, PhD-Booton University Gary Young, MD-Boston University         John Chapman, PhD-Brandeis University       John Chapman, PhD-Brandeis University Grant Ritter, PhD-Brandeis University Such Lee, MS-Brandeis University         Sure Lee, MS-Brandeis University       Martin PhD-Brandeis University                                                                             | ame: Christopher MI: Last Name: Tompkins Credentials (MD, MPH, etc.): Ph.D.<br>tompkins@brandeis.edu Telephone: 781-736-3913 ext:                                                                                                                                                                                                                                                         |     |
| <ul> <li>Workgroup/Expert Panel involved in measure development</li> <li>Provide a list of sponsoring organizations and workgroup/panel members' names and organizations.</li> <li>Describe the members' role in measure development.</li> <li>Technical Expert Panel (TEP):</li> <li>Lisa Latts, MD, MBA -WellPoint</li> <li>Julie Bynum, MD, MPH -Dartmouth Medical School</li> <li>Joanne Lynn, MD -DC Department of Health - Chronic Disease</li> <li>and Cancer Community Health Administration</li> <li>Anthony Armada, MHA, MBA -Henry Ford Hospital</li> <li>TEP Role:</li> <li>The Technical Expert Panel assisted our workgroup developing measures by providing input to:</li> <li>Supplement, and provide texture, to the knowledge gathered through the liferature review prior to measu</li> <li>development:</li> <li>Discussing existing measures and providing input as to next steps for CMS to adopt, adapt, and/or develop</li> <li>measures of care coordination relevant to the hospital setting: and</li> <li>Reviewing and providing input on draft measures and measure development testing.</li> </ul> Workgroup Kristine Martin Anderson, MBA -Booz Allen Hamilton Sandara Lesikar, PhD-Booz Allen Hamilton Sanders As, PhD-Boston University James Burgess, PhD-Boston University John Chapman, PhD-Brandeis University Solutions of the tomoles University Grant Ritter, PhD-Brandeis University Martin, PhD-Brandeis University Marian Ryan, Ph.D. Candidate-Brandeis University Workgroup Role:                                                                                           | onal Measure Developer Organizations:                                                                                                                                                                                                                                                                                                                                                     |     |
| <ul> <li>Provide a list of sponsoring organizations and workgroup/panel members' names and organizations.</li> <li>Describe the members' role in measure development.</li> <li>Technical Expert Panel (TEP):</li> <li>Lisa Latts, MD, MBA -WellPoint</li> <li>Julie Bynum, MD, MPH -Dartmouth Medical School</li> <li>Joanne Lynn, MD -DC Department of Health - Chronic Disease</li> <li>and Cancer Community Health Administration</li> <li>Anthony Armada, MHA, MBA -Henry Ford Hospital</li> <li>TEP Role:</li> <li>The Technical Expert Panel assisted our workgroup developing measures by providing input to:</li> <li>Supplement, and provide texture, to the knowledge gathered through the literature review prior to measu development;</li> <li>Discussing existing measures and providing input as to next steps for CMS to adopt, adapt, and/or develop measures of care coordination relevant to the hospital setting; and</li> <li>Reviewing and providing input on draft measures and measure development testing.</li> </ul> Workgroup Kristine Martin Anderson, MBA -Booz Allen Hamilton Sandra Lesikar, PhD-Boston University James Burgess, PhD-Boston University James Burgess, PhD-Boston University Jorn Chapman, PhD-Brandeis University John Chapman, PhD-Brandeis University Workgroup Role: Workgroup Role:                                                                                                                                                                                                                                                                                  | ADDITIONAL INFORMATION                                                                                                                                                                                                                                                                                                                                                                    |     |
| <ul> <li>The Technical Expert Panel assisted our workgroup developing measures by providing input to:</li> <li>Supplement, and provide texture, to the knowledge gathered through the literature review prior to measu development;</li> <li>Discussing existing measures and providing input as to next steps for CMS to adopt, adapt, and/or develop measures of care coordination relevant to the hospital setting; and</li> <li>Reviewing and providing input on draft measures and measure development testing.</li> </ul> Workgroup Kristine Martin Anderson, MBA -Booz Allen Hamilton Sandra Lesikar, PhD-Booz Allen Hamilton Arlene Ash, PhD-Booz IIen Hamilton Arlene Ash, PhD-Boston University Gary Young, MD-Boston University University Christopher Tompkins, PhD-Brandeis University John Chapman, PhD-Brandeis University Grant Ritter, PhD-Brandeis University Sue Lee, MS-Brandeis University Workgroup Role:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ide a list of sponsoring organizations and workgroup/panel members' names and organizations.<br>ribe the members' role in measure development.<br>cal Expert Panel (TEP):<br>tts, MD, MBA -WellPoint<br>ynum, MD, MPH -Dartmouth Medical School<br>e Lynn, MD -DC Department of Health - Chronic Disease<br>ncer Community Health Administration                                          |     |
| Kristine Martin Anderson, MBA -Booz Allen Hamilton<br>Sandra Lesikar, PhD-Booz Allen Hamilton<br>Arlene Ash, PhD-Boston University<br>James Burgess, PhD-Boston University<br>Gary Young, MD-Boston University<br>Christopher Tompkins, PhD-Brandeis University<br>John Chapman, PhD-Brandeis University<br>Timothy Martin, PhD-Brandeis University<br>Grant RItter, PhD-Brandeis University<br>Sue Lee, MS-Brandeis University<br>Marian Ryan, Ph.D.Candidate-Brandeis University<br>Workgroup Role:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | chnical Expert Panel assisted our workgroup developing measures by providing input to:<br>Supplement, and provide texture, to the knowledge gathered through the literature review prior to meas<br>pment;<br>Discussing existing measures and providing input as to next steps for CMS to adopt, adapt, and/or develop<br>res of care coordination relevant to the hospital setting; and |     |
| Sandra Lesikar, PhD-Booz Allen Hamilton<br>Arlene Ash, PhD-Boston University<br>James Burgess, PhD-Boston University<br>Gary Young, MD-Boston University<br>Christopher Tompkins, PhD-Brandeis University<br>John Chapman, PhD-Brandeis University<br>Timothy Martin, PhD-Brandeis University<br>Grant RItter, PhD-Brandeis University<br>Sue Lee, MS-Brandeis University<br>Marian Ryan, Ph.D.Candidate-Brandeis University<br>Workgroup Role:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -oup                                                                                                                                                                                                                                                                                                                                                                                      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lesikar, PhD-Booz Allen Hamilton<br>Ash, PhD-Boston University<br>Burgess, PhD-Boston University<br>oung, MD-Boston University<br>opher Tompkins, PhD-Brandeis University<br>hapman, PhD-Brandeis University<br>ny Martin, PhD-Brandeis University<br>RItter, PhD-Brandeis University<br>e, MS-Brandeis University                                                                        |     |
| review of NQF submission forms. Listed members participated on the CMS project team working on the development of measures under a hospital VBP program.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | orkgroup participated in development of measures, review of interim results during development, and the of NQF submission forms. Listed members participated on the CMS project team working on the                                                                                                                                                                                       | 9   |
| <ul> <li>If adapted, provide name of original measure: 30-day Post-hospital HF Discharge Care Transition Measure</li> <li>If adapted, provide original specifications</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                           |     |

► Month and Year of most recent revision:

What is the frequency for review/update of this measure?
 When is the next scheduled review/update for this measure?

Copyright statement/disclaimers: NA

Additional Information web page URL:

I have checked that the submission is complete and all the information needed to evaluate the measure is provided in the form; any blank fields indicate that no information is provided.

Date of Submission (MM/DD/YY): 9/18/2009

## AMI 30-Day Post-Hospital Discharge Care Transition Composite Measure

## Supporting Material for Scientific Acceptability

**Brandeis University** 

### 1. Introduction

This document elaborates and supports the statements on scientific acceptability in Brandeis University's November 10, 2009 revision of its September 18, 2009 submission of a measure titled "30-Day Post-Hospital AMI Discharge Care Transition Composite Measure" to the National Quality Forum's Consensus Development Project on Proposed Patient Outcomes Measures (Phase I) in response to its call for candidate standards.

### 1.1. Data Sample

All data used for the analyses described in this document are from the Dartmouth Atlas 20% sample of Medicare Carrier Claim files for 2003-2007. Data from 2003 are used only for pre-admission information about patients admitted during 2004, and are not included directly in any of the analysis presented. December 2007 is used only for information about the 30-day post-discharge period; there are no December 2007 index admissions in the results presented here. These data were processed in accordance with the measure definitions described in the submission. All resulting index admissions were used in the model for testing and estimation and are reflected in the individual level expected and predicted values used in computing the component measures. However, composite measure scores were analyzed only for hospitals having 10 or more index admissions in 2006. These are the same hospitals used for the analysis presented in support of the accompanying submissions for the ED visit and E&M service measures used for this composite.

More information about the ED visit and E&M service component scores used for this analysis can be found in the submissions for those measures. Similar information about the readmission component data and scores used for this analysis is presented in Appendix B.

#### 1.2. Measure Methods

The component measures of this composite use three years of data, updated annually (i.e., rolling average), borrowing power longitudinally in order to increase the signal-to-noise ratio relative to simple annual calculations. This supporting analysis provides one-year and three-year computations to show what is gained in exchange for the loss of 'currentness' resulting from the three-year approach.

Analysis considered observed-to-expected (O/E) ratios as well as the proposed predicted-to-expected (P/E) ratios. Results of both approaches are documented below. The O/E rate for three years is a weighted average of three one-year rates, with weights of 0.5 for the most recent year, 0.3 for the prior year and 0.2 for the first year. The P/E rate for three years is computed using the results of the HGLM model estimated for three years. Other weighting approaches will be investigated during the provisional period.

2. Component item/measure analysis to justify inclusion in composite (Measure evaluation criterion 2i)

Table 1 displays coefficients of correlation among the three component measures, for each of the method and time period combinations. All are significant at p<0.0001. There is substantial consistency among the method and period combinations, with the three-year and P/E variations having slightly larger values.

Pearson Coefficient **Spearman Coefficient** Readmission ED Visit Readmission **ED** Visit Measure, Method and Period **One-Year Using O/E** ED Visit -0.104 -0.097 ٠ 0.201 0.221 0.198 0.216 E & M Service • **One-Year Using P/E** ED Visit -0.090 • -0.100 E & M Service 0.143 0.259 0.155 0.226 ٠ Three-Years Using O/E ED Visit -0.110 -0.151 • 0.192 0.264 0.174 0.247 E & M Service Three-Years Using P/E -0.130 -0.146 ED Visit • 0.146 0.320 0.161 0.281 E & M Service •

Table 1: AMI 30-Day Care Transition Composite – Correlation Among Component Measures

Note: For clarity of presentation, the directions of the measures were aligned before computing the correlation coefficients.

We present correlation coefficients because reviewers and users may find them of interest. They were not the basis for our decision to include these measures in the composite. Rather, as articulated in our submissions for NQF endorsement of these measures, we believe that each is an intrinsically valid indicator of the outcome of care coordination and hence belongs in the care transition composite measure.

Interpretation of the negative correlation between the readmission and ambulatory ED visit measures is warranted. In many cases the independent components of a composite are intended to measure imperfectly the same underlying construct, these

are called reflective measures. In such cases, the correlations between components will be positive. In other cases, some components of a composite will note events which somewhat substitute for each other or are uncorrelated with each other, and it is reasonable to add the measures together to make what is called a formative measure even though some of the underlying constructs are negatively correlated. This is the situation for our readmissions and ambulatory ED visit components. Both measure a lack of care coordination, but since the same patient can not be readmitted and have an ambulatory ED visit during the same trip to the hospital, the correlation between them can be negative.

Checking further, we find that the Pearson correlation coefficient between the E&M service within 30 days rate and the sum of the readmission and ambulatory ED visit components is approximately 0.260 to 0.330, depending on composite formulation. This correlation is higher than between any two individual components and provides justification for combining the three components. The Cronbach alphas for the three components (standardized) are in the range of 0.258 to 0.281, again reflecting agreement among them.

3. Component item/measure analysis of contribution to variability in composite score (Measure evaluation criterion 2j)

Each of the three component measures is substantially correlated with the composite. These coefficients are in Table 2. There is little variation by method or time period.

| Period and Method       | Readmission | ED Visit | E&M Service |
|-------------------------|-------------|----------|-------------|
| One Year – Using O/E    |             |          |             |
| • Pearson               | -0.900      | -0.274   | 0.490       |
| • Spearman              | -0.892      | -0.251   | 0.461       |
| One Year – Using P/E    |             |          |             |
| • Pearson               | -0.776      | -0.274   | 0.707       |
| • Spearman              | -0.756      | -0.233   | 0.697       |
| Three Years – Using O/E |             |          |             |
| • Pearson               | -0.896      | -0.274   | -0.505      |
| • Spearman              | -0.872      | -0.222   | 0.493       |
| Three Years – Using P/E |             |          |             |
| • Pearson               | -0.775      | -0.336   | 0.685       |
| • Spearman              | -0.759      | -0.285   | 0.677       |

4. Identification of Meaningful Differences in Performance (Measure evaluation criterion 2f)

Table 3 summarizes the distribution of the composite scores using each of the methods and time periods for the 1,131 hospitals having 10 or more index admissions in 2006 Table 4 breaks these rates down by hospital AMI volume (quartile of index admissions in 2006). These data are illustrated by histograms in Appendix A.

|                           | Р5  | P25 | Median | P75   | P95   |
|---------------------------|-----|-----|--------|-------|-------|
| One-Year Composite Scores |     |     |        |       |       |
| • Using O/E               | 710 | 246 | 0.031  | 0.290 | 0.653 |
| • Using P/E               | 110 | 034 | 0.004  | 0.040 | 0.096 |
| Three-Year                |     |     |        |       |       |
| • Using O/E               | 476 | 157 | 0.031  | 0.192 | 0.462 |
| • Using P/E               | 142 | 047 | 0.007  | 0.062 | 0.136 |

 Table 3: AMI 30-Day Care Transition Composite -- Distribution Among Hospitals, by Estimation Period

For more appropriate interpretation, the composite measure, which is a weighted sum, can be standardized by dividing by 7 (the sum of the weights). This standardization implies that when all component measure deviations are equal (e.g. 1%), the resulting standardized composite score will have this same common value (e.g., again 1%). With such scaling, the composite's 5<sup>th</sup> percentile is -2.0% (indicating each deviation of these lowest performing hospitals averages -2.0%) and the 95<sup>th</sup> percentile is 1.9% (indicating each deviation of these highest performing hospitals averages 1.9%). Under the same scaling, the inter-quartile range for the composite is -0.7% to 0.9%.

|                                 |               | P5    | P25 | Median | P75   | P95   |
|---------------------------------|---------------|-------|-----|--------|-------|-------|
| Composite Score - O/E           | Vol. Quartile |       |     |        |       |       |
|                                 | Q1: 10 - 14   | -1.08 | 322 | 0.062  | 0.452 | 0.802 |
|                                 | Q2: 15 - 21   | 737   | 243 | 0.055  | 0.351 | 0.649 |
|                                 | Q3: 22 - 34   | 638   | 290 | 017    | 0.254 | 0.594 |
|                                 | Q4: 35 - 127  | 581   | 148 | 0.020  | 0.208 | 0.466 |
| Composite Score - P/E           | Vol. Quartile |       |     |        |       |       |
|                                 | Q1: 10 - 14   | 089   | 025 | 0.010  | 0.037 | 0.071 |
|                                 | Q2: 15 - 21   | 084   | 028 | 0.004  | 0.038 | 0.081 |
|                                 | Q3: 22 - 34   | 111   | 043 | 002    | 0.034 | 0.095 |
|                                 | Q4: 35 - 127  | 150   | 037 | 0.004  | 0.053 | 0.120 |
| Composite Score - O/E 3-yr Wtd. | Vol. Quartile |       |     |        |       |       |
|                                 | Q1: 10 - 14   | 701   | 220 | 0.050  | 0.262 | 0.540 |
|                                 | Q2: 15 - 21   | 515   | 184 | 0.023  | 0.213 | 0.492 |
|                                 | Q3: 22 - 34   | 378   | 156 | 0.006  | 0.157 | 0.429 |
|                                 | Q4: 35 - 127  | 319   | 120 | 0.039  | 0.162 | 0.323 |
| Composite Score - P/E 3-yr      | Vol. Quartile |       |     |        |       |       |
|                                 | Q1: 10 - 14   | 120   | 037 | 0.006  | 0.053 | 0.110 |
|                                 | Q2: 15 - 21   | 132   | 045 | 0.006  | 0.055 | 0.131 |
|                                 | Q3: 22 - 34   | 135   | 051 | 0.009  | 0.065 | 0.148 |
|                                 | Q4: 35 - 127  | 178   | 064 | 0.014  | 0.080 | 0.158 |

 Table 4: AMI 30-Day Care Transition Composite -- Distribution Among Hospitals, By Volume Quartile

#### 5. Reliability Testing (Measure evaluation criterion 2b)

Reliability was assessed by correlating the one-year scores for 2007 with both the one-year scores for 2006 and the three-year scores for 2006. In each case, both Pearson and Spearman correlations were calculated, the latter being less susceptible to outliers. As an additional assessment, scores were grouped in quintiles and weighted kappa statistics were computed. These results are all in Table 9, with each value being statistically significant (p<.001) unless indicated otherwise. Correlation statistics between the three-year average ending in 2007 and the three-year average ending in 2006 are not calculated because the two scores share two years of data in common.

|                                                      | One Year                   | (2006) | Three Years (2004-6) |                     |  |
|------------------------------------------------------|----------------------------|--------|----------------------|---------------------|--|
| Statistic                                            | Obs./Exp. Ratio Pred./Exp. |        | Obs./Exp.<br>Ratio   | Pred./Exp.<br>Ratio |  |
| Correlation Coefficients <ul> <li>Pearson</li> </ul> | 0.038<br>(p=0.203)         | 0.178  | .068<br>(p=0.022)    | 0. 234              |  |
| • Spearman                                           | 0.041<br>(p=0.168)         | 0.155  | 0.062<br>(p=0.037)   | 0.213               |  |
| Kappa Statistic <ul> <li>Weighted Kappa</li> </ul>   | 0.053<br>(p=0.005)         |        | 0.047<br>(p=0.011)   | 0.129               |  |
| • 95% CI – Lower                                     | 0.012                      | 0.053  | 0.007                | 0.088               |  |
| • 95% CI Upper                                       | 0.093                      | 0.136  | 0.087                | 0.169               |  |

 Table 5: AMI 30-Day Care Transition Composite -- Reliability When Comparing Across Years

#### Appendix A

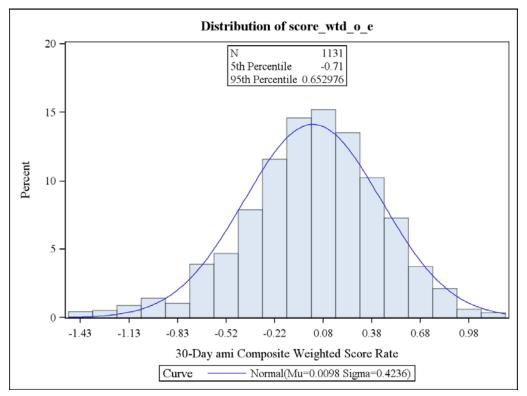
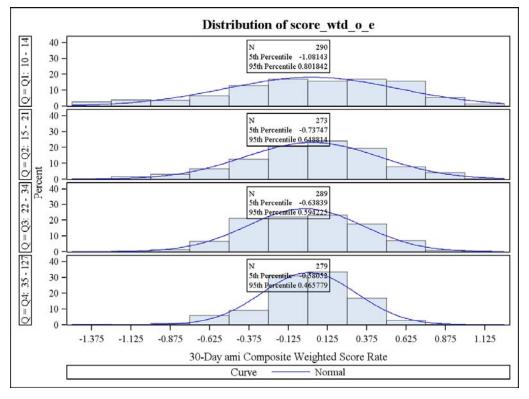




Figure 1: Distribution of Hospital 30-Day AMI Discharge Care Transition Composite Rates (O/E Method -- One Year – 2006)

Figure 2: Distribution of Hospital 30-Day AMI Discharge Care Transition Composite Rates (O/E Method -- One Year – 2006), By Volume Quartile



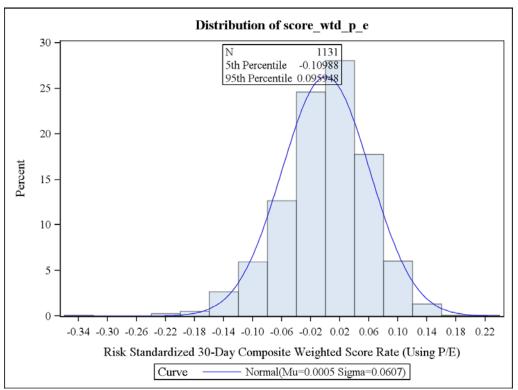
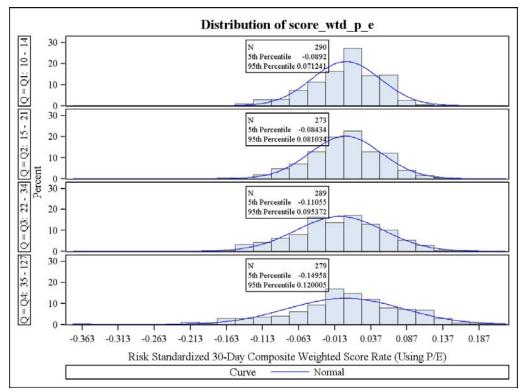




Figure 3: Distribution of Hospital 30-Day AMI Discharge Care Transition Composite Rates (P/E Method -- One Year – 2006)

Figure 4: Distribution of Hospital 30-Day AMI Discharge Care Transition Composite Rates (O/E Method -- One Year – 2006), By Volume Quartile



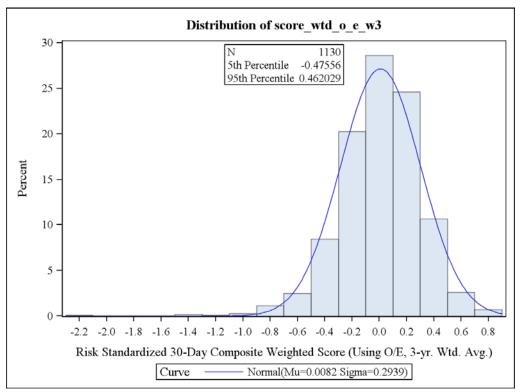
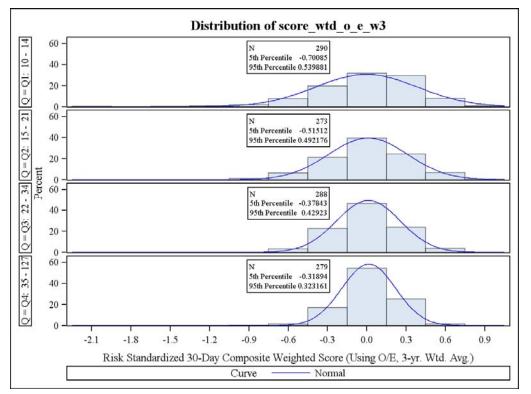




Figure 5: Distribution of Hospital 30-Day AMI Discharge Care Transition Composite Rates (O/E Method -- Three Years – 2004-6)

Figure 6: Distribution of Hospital 30-Day AMI Discharge Care Transition Composite Rates (O/E Method -- Three Years – 2004-6), By Volume Quartile



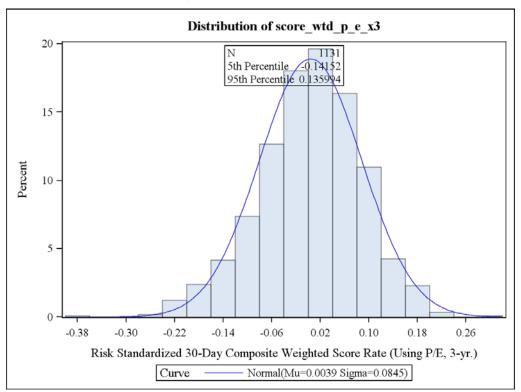
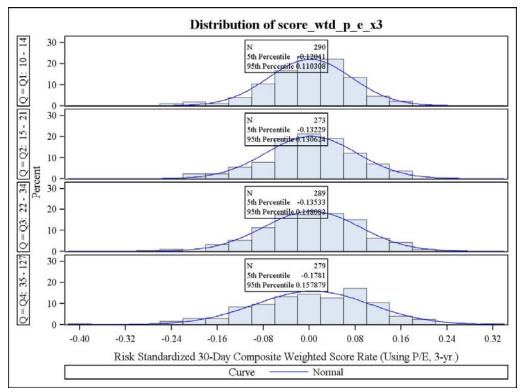




Figure 7: Distribution of Hospital 30-Day AMI Discharge Care Transition Composite Rates (P/E Method -- Three Years – 2004-6)

Figure 8: Distribution of Hospital 30-Day AMI Discharge Care Transition Composite Rates (P/E Method -- Three Years – 2004-6), By Volume Quartile



## Appendix B

## 30-Day Post-Hospital AMI Discharge Readmission Measure Scores Used for Composite Measure Assessment

#### 2. Introduction

This appendix describes and assesses the 30-day post-hospital AMI readmission rates used for the analyses of the proposed 30-Day Post-Hospital AMI Discharge Care Transition Composite Measure.

### 5.1. Data Sample

All data used for the analyses described in this document are from the Dartmouth Atlas 20% sample of Medicare Carrier Claim files for 2003-2007. Data from 2003 are used only for pre-admission information about patients admitted during 2004, and are not included directly in any of the analysis presented. December 2007 is used only for information about the 30-day post-discharge period; there are no December 2007 index admissions in the results presented here. These data were processed in accordance with the measure definitions described in the submission. All resulting index admissions were used in the model for testing and estimation and are reflected in the results presented in section 2 on Risk Adjustment. Scores and their analysis discussed in sections 3 and 4 were analyzed only for hospitals having 10 or more index admissions with a primary diagnosis of AMI, and the rate of a 30-day post-discharge readmission following these admissions.

5.2. Summary of Sample by Year

The proposed measure uses three years of data, updated annually (i.e., rolling average) in order to increase the signal-to-noise ratio relative to simple annual calculations. This supporting analysis provides one-year and three-year computations to show what is gained in exchange for the loss of 'currentness' resulting from the three-year approach.

|      |                                  | All Hospitals              |                        | Hospitals With 10+ Index Admissions in 2006        |       |                        |  |
|------|----------------------------------|----------------------------|------------------------|----------------------------------------------------|-------|------------------------|--|
|      | Number of<br>Index<br>Admissions | 30-Day<br>Readmission Rate | Number of<br>Hospitals | Number of<br>Index30-DayAdmissionsReadmission Rate |       | Number of<br>Hospitals |  |
| Year |                                  |                            |                        |                                                    |       |                        |  |
| 2004 | 44,267                           | 0.210                      | 3,508                  | 34,712                                             | 0.205 | 1,126                  |  |
| 2005 | 42,010                           | 0.204                      | 3,396                  | 33,281                                             | 0.198 | 1,129                  |  |
| 2006 | 38,456                           | 0.205                      | 3,243                  | 31,652                                             | 0.202 | 1,131                  |  |
| 2007 | 32,728                           | 0.198                      | 3,133                  | 26,016                                             | 0.194 | 1,130                  |  |

Table 6: Count of AMI Index Admissions and 30-Day Readmission Rate, By Year

Analysis to-date has considered observed-to-expected (O/E) ratios as well as the proposed predicted-to-expected (P/E) ratios. Results of both approaches are documented below. The O/E rate for three years is a weighted average of three one-year rates, with weights of 0.5 for the most recent year, 0.3 for the prior year and 0.2 for the first year. The P/E rate for three years is computed using the results of the HGLM model estimated for three years. Other approaches will be investigated during the provisional period.

#### 6. Risk Adjustment

#### 6.1. Method

The risk adjustment strategy is one of indirect adjustment, with predicted and expected 30-day post-discharge readmission rates calculated for each hospital using a hierarchical logistic regression model. The statistical model is that of the Hospital 30-Day Acute Myocardial Infarction Readmission Measure Methodology prepared for CMS by the Yale University/Yale-New Haven Hospital Center for Outcomes Research and Evaluation (YNHH-CORE, 2008), with the level 1 demographic and condition covariates from that methodology and each hospital in our data as a level 2 unit. We are using the fixed covariates selected by YNHH-CORE for readmission following a AMI stay.

#### 6.2. Analysis

6.2.1. YNHH-CORE tested and validated their selected covariates using a generalized linear model (GLM) with a logistic link function. We assessed the application of that model to our data for 2004-6. Results are summarized in Table 2.

| Statistic                                  |             | Value            |
|--------------------------------------------|-------------|------------------|
| Actual Rate                                |             | 0.206            |
| Max. Re-scaled $R^2$                       |             | 0.025            |
| Predictive Ability                         |             |                  |
| (Lowest Decile,                            |             | 0.125 - 0.286    |
| Highest Decile) <sup>1</sup>               |             |                  |
| c-statistic                                |             | 0.591            |
|                                            | <-2         | -                |
| Residuals Lack of Fit                      | [-2, 0)     | 79.4             |
| (Pearson Residual Fall %)                  | [0, 2)      | 12.4             |
|                                            | [2+         | 8.2              |
| Model Wald chi-squared                     |             | 1,980            |
| (number of covariates)                     | (31)        |                  |
| <sup>1</sup> Average actual rate within in | ndicated de | cile when ranked |
| by estimated probability.                  |             |                  |

 Table 7: AMI 30-Day Readmission Rate -- GLM Model (covariates only) Performance (2004-6)

Table 3 lists the covariates with their incidence among the AMI index admissions for 2004-6 and results of the GLM logistic estimates using those admissions.

6.2.2. The composite measure is specified to be computed annually, using the most recent three years of data. Analysis was done with both one year of data, and three. Table 4 gives parameter estimates for the fixed covariates in the HGLM model using data for one year, 2006, and table 5 for three years, 2004-6.

| Table 8: AMI 30-Day Readmission Rate                                                 | rioposeu                             | Covariates a | inu Stati         | sucs      |                        |               |
|--------------------------------------------------------------------------------------|--------------------------------------|--------------|-------------------|-----------|------------------------|---------------|
| Effect                                                                               | Mean, Std.<br>Dev., or<br>Proportion | Estimate     | Standard<br>Error | Std. Est. | Odds Ratio<br>Estimate | OR 95% CI     |
| Intercept                                                                            |                                      | -1.812       | 0.027             | _         |                        |               |
| Age-65 (years above 65, continuous)                                                  | 13.8597                              | 0.004        | 0.001             | 0.0180    | 1.004                  | 1.002 - 1.006 |
| Age - Std. Dev.                                                                      | 7.9883                               |              |                   |           |                        |               |
| Sex (Male)                                                                           | 0.4995                               | -0.038       | 0.007             | _         | 0.926                  | 0.899 - 0.953 |
| History of PCI                                                                       | 0.5053                               | -0.055       | 0.017             | -0.0152   | 0.946                  | 0.916 - 0.978 |
| History of CABG                                                                      | 0.0619                               | -0.019       | 0.031             | -0.0025   | 0.981                  | 0.923 - 1.044 |
| CC 80 Congestive heart failure                                                       | 0.4247                               | 0.310        | 0.015             | 0.0845    | 1.363                  | 1.323 - 1.405 |
| CC 81, 82 Acute coronary syndrome                                                    | 0.0374                               | 0.079        | 0.037             | 0.0084    | 1.082                  | 1.007 - 1.164 |
| ICD-9-CM 410.00-410.19 Anterior myocardial infarction                                | 0.0201                               | 0.132        | 0.049             | 0.0103    | 1.142                  | 1.037 - 1.257 |
| ICD-9-CM 410.20-410.69 Other location of myocardial infarction                       | 0.1424                               | -0.032       | 0.021             | -0.0061   | 0.969                  | 0.929 - 1.011 |
| CC 83 Angina pectoris/old myocardial infarction                                      | 0.0823                               | -0.005       | 0.026             | -0.0008   | 0.995                  | 0.945 - 1.048 |
| CC 84 Coronary atherosclerosis/other chronic ischemic heart disease                  | 0.6796                               | 0.023        | 0.017             | 0.0060    | 1.024                  | 0.991 - 1.058 |
| CC 86 Valvular and rheumatic heart disease                                           | 0.1797                               | 0.106        | 0.018             | 0.0224    | 1.112                  | 1.073 - 1.152 |
| CC 92, 93 Arrhythmias                                                                | 0.3738                               | 0.113        | 0.015             | 0.0301    | 1.120                  | 1.088 - 1.152 |
| CC 97-99, 103 Cerebrovascular disease                                                | 0.0331                               | 0.095        | 0.039             | 0.0095    | 1.100                  | 1.019 - 1.187 |
| CC 95, 96 Stroke                                                                     | 0.0198                               | 0.084        | 0.049             | 0.0065    | 1.088                  | 0.987 - 1.198 |
| CC 104-106 Vascular or circulatory disease                                           | 0.1520                               | 0.104        | 0.019             | 0.0206    | 1.110                  | 1.068 - 1.152 |
| CC 67-69, 100-102, 177, 178 Hemiplegia, paraplegia, paralysis, functional disability | 0.0151                               | 0.066        | 0.057             | 0.0044    | 1.068                  | 0.955 - 1.194 |
| CC 15-20, 119, 120 Diabetes and DM complications                                     | 0.2743                               | 0.145        | 0.016             | 0.0357    | 1.156                  | 1.120 - 1.192 |
| CC 131 Renal failure                                                                 | 0.1928                               | 0.277        | 0.019             | 0.0582    | 1.319                  | 1.272 - 1.368 |
| CC 129, 130 End-stage renal disease or dialysis                                      | 0.0094                               | 0.476        | 0.064             | 0.0251    | 1.610                  | 1.420 - 1.826 |
| CC 136 Other urinary tract disorders                                                 | 0.0813                               | 0.140        | 0.024             | 0.0219    | 1.151                  | 1.097 - 1.207 |
| CC 108 COPD                                                                          | 0.2050                               | 0.165        | 0.017             | 0.0367    | 1.179                  | 1.140 - 1.220 |
| CC 111-113 History of pneumonia                                                      | 0.1012                               | 0.055        | 0.023             | 0.0092    | 1.057                  | 1.010 - 1.106 |
| CC 110 Asthma                                                                        | 0.0148                               | 0.031        | 0.060             | 0.0020    | 1.031                  | 0.917 - 1.159 |
| CC 22, 23 Disorders of fluid/electrolyte/acid-base                                   | 0.1741                               | 0.062        | 0.019             | 0.0130    | 1.064                  | 1.026 - 1.104 |
| CC 1, 3-6 History of infection                                                       | 0.0017                               | -0.245       | 0.189             | -0.0055   | 0.782                  | 0.540 - 1.133 |
| CC 7 Metastatic cancer and acute leukemia                                            | 0.0089                               | 0.306        | 0.072             | 0.0157    | 1.358                  | 1.179 - 1.563 |
| CC 8-12 Cancer                                                                       | 0.0345                               | 0.155        | 0.039             | 0.0156    | 1.168                  | 1.083 - 1.260 |
| CC 47 Iron deficiency and other/unspecified anemias and blood disease                | 0.1570                               | 0.109        | 0.019             | 0.0219    | 1.115                  | 1.074 - 1.157 |
| CC 148, 149 Decubitus ulcer or chronic skin ulcer                                    | 0.0191                               | 0.223        | 0.047             | 0.0168    | 1.250                  | 1.139 - 1.371 |
| CC 49, 50 Dementia and senility                                                      | 0.0773                               | -0.117       | 0.028             | -0.0172   | 0.889                  | 0.842 - 0.940 |
| CC 21 Protein-calorie malnutrition                                                   | 0.0161                               | 0.096        | 0.054             | 0.0066    | 1.101                  | 0.991 - 1.223 |

#### Table 8: AMI 30-Day Readmission Rate -- GLM (2004-6) -- Proposed Covariates and Statistics

| Effect                                                                               | Estimate | Standard<br>Error | t Value | $\Pr >  t $ |
|--------------------------------------------------------------------------------------|----------|-------------------|---------|-------------|
| Intercept                                                                            | -1.811   | 0.051             | -35.32  | <.0001      |
| Sex (Male)                                                                           | -0.077   | 0.027             | -2.90   | 0.0038      |
| Age-65 (years above 65, continuous)                                                  | 0.006    | 0.002             | 3.15    | 0.0016      |
| History of PCI                                                                       | -0.047   | 0.030             | -1.57   | 0.1171      |
| History of CABG                                                                      | -0.051   | 0.056             | -0.92   | 0.3581      |
| CC 80 Congestive heart failure                                                       | 0.280    | 0.028             | 10.01   | <.0001      |
| CC 81, 82 Acute coronary syndrome                                                    | 0.003    | 0.070             | 0.04    | 0.9652      |
| ICD-9-CM 410.00-410.19 Anterior myocardial infarction                                | 0.180    | 0.086             | 2.09    | 0.0362      |
| ICD-9-CM 410.20-410.69 Other location of myocardial infarction                       | 0.002    | 0.039             | 0.06    | 0.9537      |
| CC 83 Angina pectoris/old myocardial infarction                                      | 0.039    | 0.048             | 0.82    | 0.4126      |
| CC 84 Coronary atherosclerosis/other chronic ischemic heart disease                  | 0.002    | 0.030             | 0.07    | 0.9452      |
| CC 86 Valvular and rheumatic heart disease                                           | 0.143    | 0.032             | 4.42    | <.0001      |
| CC 92, 93 Arrhythmias                                                                | 0.109    | 0.026             | 4.11    | <.0001      |
| CC 97-99, 103 Cerebrovascular disease                                                | 0.131    | 0.071             | 1.86    | 0.0630      |
| CC 95, 96 Stroke                                                                     | 0.099    | 0.087             | 1.14    | 0.2541      |
| CC 104-106 Vascular or circulatory disease                                           | 0.125    | 0.035             | 3.61    | 0.0003      |
| CC 67-69, 100-102, 177, 178 Hemiplegia, paraplegia, paralysis, functional disability | -0.102   | 0.112             | -0.91   | 0.3624      |
| CC 15-20, 119, 120 Diabetes and DM complications                                     | 0.138    | 0.029             | 4.78    | <.0001      |
| CC 131 Renal failure                                                                 | 0.298    | 0.031             | 9.71    | <.0001      |
| CC 129, 130 End-stage renal disease or dialysis                                      | 0.675    | 0.105             | 6.44    | <.0001      |
| CC 136 Other urinary tract disorders                                                 | 0.162    | 0.051             | 3.16    | 0.0016      |
| CC 108 COPD                                                                          | 0.160    | 0.031             | 5.14    | <.0001      |
| CC 111-113 History of pneumonia                                                      | 0.093    | 0.042             | 2.22    | 0.0262      |
| CC 110 Asthma                                                                        | 0.193    | 0.102             | 1.90    | 0.0579      |
| CC 22, 23 Disorders of fluid/electrolyte/acid-base                                   | 0.048    | 0.033             | 1.43    | 0.1518      |
| CC 1, 3-6 History of infection                                                       | -0.202   | 0.349             | -0.58   | 0.5630      |
| CC 7 Metastatic cancer and acute leukemia                                            | 0.048    | 0.136             | 0.35    | 0.7262      |
| CC 8-12 Cancer                                                                       | 0.165    | 0.069             | 2.39    | 0.0169      |
| CC 47 Iron deficiency and other/unspecified anemias and blood disease                | 0.140    | 0.034             | 4.09    | <.0001      |
| CC 148, 149 Decubitus ulcer or chronic skin ulcer                                    | 0.292    | 0.085             | 3.44    | 0.0006      |
| CC 49, 50 Dementia and senility                                                      | -0.178   | 0.051             | -3.48   | 0.0005      |
| CC 21 Protein-calorie malnutrition                                                   | -0.018   | 0.099             | -0.18   | 0.8568      |

### Table 9: AMI 30-Day Readmission Rate -- HGLM Parameter Estimates, 2006

|                                                                                      |          | Standard |         |         |
|--------------------------------------------------------------------------------------|----------|----------|---------|---------|
| Effect                                                                               | Estimate | Error    | t Value | Pr >  t |
| Intercept                                                                            | -1.770   | 0.028    | -62.43  | <.0001  |
| Sex (Male)                                                                           | -0.074   | 0.015    | -5.04   | <.0001  |
| Age-65 (years above 65, continuous)                                                  | 0.004    | 0.001    | 3.94    | <.0001  |
| History of PCI                                                                       | -0.056   | 0.017    | -3.37   | 0.0007  |
| History of CABG                                                                      | -0.021   | 0.031    | -0.68   | 0.4968  |
| CC 80 Congestive heart failure                                                       | 0.306    | 0.015    | 19.78   | <.0001  |
| CC 81, 82 Acute coronary syndrome                                                    | 0.076    | 0.037    | 2.07    | 0.0381  |
| ICD-9-CM 410.00-410.19 Anterior myocardial infarction                                | 0.139    | 0.049    | 2.84    | 0.0045  |
| ICD-9-CM 410.20-410.69 Other location of myocardial infarction                       | -0.025   | 0.021    | -1.18   | 0.2361  |
| CC 83 Angina pectoris/old myocardial infarction                                      | -0.006   | 0.026    | -0.21   | 0.8333  |
| CC 84 Coronary atherosclerosis/other chronic ischemic heart disease                  | 0.026    | 0.017    | 1.55    | 0.1206  |
| CC 86 Valvular and rheumatic heart disease                                           | 0.114    | 0.018    | 6.27    | <.0001  |
| CC 92, 93 Arrhythmias                                                                | 0.116    | 0.015    | 7.88    | <.0001  |
| CC 97-99, 103 Cerebrovascular disease                                                | 0.095    | 0.039    | 2.45    | 0.0144  |
| CC 95, 96 Stroke                                                                     | 0.082    | 0.049    | 1.66    | 0.0968  |
| CC 104-106 Vascular or circulatory disease                                           | 0.106    | 0.019    | 5.49    | <.0001  |
| CC 67-69, 100-102, 177, 178 Hemiplegia, paraplegia, paralysis, functional disability | 0.065    | 0.057    | 1.14    | 0.2544  |
| CC 15-20, 119, 120 Diabetes and DM complications                                     | 0.143    | 0.016    | 9.01    | <.0001  |
| CC 131 Renal failure                                                                 | 0.278    | 0.019    | 14.97   | <.0001  |
| CC 129, 130 End-stage renal disease or dialysis                                      | 0.471    | 0.064    | 7.35    | <.0001  |
| CC 136 Other urinary tract disorders                                                 | 0.144    | 0.024    | 5.95    | <.0001  |
| CC 108 COPD                                                                          | 0.164    | 0.017    | 9.49    | <.0001  |
| CC 111-113 History of pneumonia                                                      | 0.052    | 0.023    | 2.27    | 0.0233  |
| CC 110 Asthma                                                                        | 0.031    | 0.059    | 0.52    | 0.6025  |
| CC 22, 23 Disorders of fluid/electrolyte/acid-base                                   | 0.062    | 0.019    | 3.28    | 0.0010  |
| CC 1, 3-6 History of infection                                                       | -0.254   | 0.188    | -1.35   | 0.1764  |
| CC 7 Metastatic cancer and acute leukemia                                            | 0.304    | 0.072    | 4.24    | <.0001  |
| CC 8-12 Cancer                                                                       | 0.155    | 0.039    | 4.02    | <.0001  |
| CC 47 Iron deficiency and other/unspecified anemias and blood disease                | 0.107    | 0.019    | 5.66    | <.0001  |
| CC 148, 149 Decubitus ulcer or chronic skin ulcer                                    | 0.216    | 0.047    | 4.57    | <.0001  |
| CC 49, 50 Dementia and senility                                                      | -0.117   | 0.028    | -4.19   | <.0001  |
| CC 21 Protein-calorie malnutrition                                                   | 0.096    | 0.054    | 1.80    | 0.0719  |

### Table 10: AMI 30-Day Readmission Rate -- HGLM Parameter Estimates, 2004 - 2006

#### 7. Differences in Performance

The between-hospital variance and intra-class correlation coefficients from both the one- and three-year versions of the HGLM indicate the existence of significant, though small, differences among hospitals in the rate at which their AMI patients receive at least one readmission within the month following discharge. Table 6 summarizes these statistics for 2006. Results using data from other years were consistent.

| Statistic                      | <b>One Year (2006)</b> | Three Years (2004-6) |
|--------------------------------|------------------------|----------------------|
|                                |                        |                      |
| Between-Hospital Variance (SE) | .035 (.010)            | 0.033 (0.004)        |
| Residual Variance (SE)         | 0.983 (0.007)          | 0.963 (0.004)        |
| Intra-Class Correlation        | 0.034                  | 0.033                |

Table 11: AMI 30-Day Readmission Rate -- Variation Among Hospitals

For purposes of analysis, risk standardized rates were computed using (a) observedto-expected (O/E) rates and (b) predicted-to-expected (P/E) rates, each for one-year and three-year time periods. The O/E rate for three years is a weighted average of three one-year rates, with weights of 0.5 for the most recent year, 0.3 for the prior year and 0.2 for the first year. The P/E rate for three years is computed using the results of the HGLM model estimated for three years. Table 7 summarizes the distribution of the underlying actual, predicted and respective risk-standardized rates computed using each of the time periods. The distribution is of hospital-level rates, for the 1,131 hospitals having 10 or more index admissions in 2006. Table 8 breaks these rates down by hospital AMI volume (quartile of index admissions in 2006). These statistics are illustrated by histograms in Appendix B-1.

| Table 12: AMI 30-Day Readmission Rate Dis | tribution | Among He | ospitals o | of Actual a | nd Risl | K- |
|-------------------------------------------|-----------|----------|------------|-------------|---------|----|
| Standardized Rates, by Estimation Period  |           |          |            |             |         |    |
|                                           |           | 1        |            |             |         |    |

|                                      | Mean  | Р5    | P25   | Median | P75   | P95   |
|--------------------------------------|-------|-------|-------|--------|-------|-------|
| One-Year                             |       |       |       |        |       |       |
| • Actual                             | 0.205 | 0.071 | 0.143 | 0.194  | 0.263 | 0.375 |
| • Risk-Standardized Rate (Using O/E) | 0.205 | 0.072 | 0.142 | 0.195  | 0.261 | 0.369 |
| • Predicted                          | 0.205 | 0.174 | 0.190 | 0.202  | 0.219 | 0.244 |
| • Risk-Standardized Rate (Using P/E) | 0.205 | 0.189 | 0.198 | 0.204  | 0.212 | 0.224 |
| Three-Year                           |       |       |       |        |       |       |
| • Actual                             | 0.206 | 0.102 | 0.165 | 0.200  | 0.244 | 0.323 |
| • Risk-Standardized Rate (Using O/E) | 0.205 | 0.108 | 0.165 | 0.201  | 0.241 | 0.315 |
| Predicted                            | 0.206 | 0.173 | 0.190 | 0.204  | 0.221 | 0.245 |
| • Risk-Standardized Rate (Using P/E) | 0.205 | 0.180 | 0.194 | 0.204  | 0.214 | 0.231 |

|                                               |               | Mean  | P5    | P25   | Median | P75   | P95   |
|-----------------------------------------------|---------------|-------|-------|-------|--------|-------|-------|
| One-Year Actual                               | Vol. Quartile |       |       |       |        |       |       |
|                                               | Q1: 10 - 14   | 0.209 | 0.000 | 0.100 | 0.182  | 0.300 | 0.429 |
|                                               | Q2: 15 - 21   | 0.207 | 0.063 | 0.125 | 0.200  | 0.267 | 0.381 |
|                                               | Q3: 22 - 34   | 0.207 | 0.083 | 0.138 | 0.200  | 0.268 | 0.348 |
|                                               | Q4: 35 - 127  | 0.198 | 0.098 | 0.158 | 0.189  | 0.236 | 0.324 |
| One-Year Risk-Standardized Rate (Using O/E)   | Vol. Quartile |       |       |       |        |       |       |
|                                               | Q1: 10 - 14   | 0.203 | 0.000 | 0.112 | 0.186  | 0.291 | 0.431 |
|                                               | Q2: 15 - 21   | 0.206 | 0.064 | 0.136 | 0.193  | 0.265 | 0.381 |
|                                               | Q3: 22 - 34   | 0.210 | 0.084 | 0.144 | 0.206  | 0.271 | 0.347 |
|                                               | Q4: 35 - 127  | 0.201 | 0.112 | 0.159 | 0.196  | 0.238 | 0.327 |
| One-Year Predicted                            | Vol. Quartile |       |       |       |        |       |       |
|                                               | Q1: 10 - 14   | 0.211 | 0.172 | 0.192 | 0.209  | 0.226 | 0.261 |
|                                               | Q2: 15 - 21   | 0.206 | 0.177 | 0.191 | 0.203  | 0.219 | 0.248 |
|                                               | Q3: 22 - 34   | 0.203 | 0.174 | 0.190 | 0.202  | 0.214 | 0.235 |
|                                               | Q4: 35 - 127  | 0.200 | 0.172 | 0.187 | 0.197  | 0.214 | 0.235 |
| One-Year Risk-Standardized Rate (Using P/E)   | Vol. Quartile |       |       |       |        |       |       |
|                                               | Q1: 10 - 14   | 0.205 | 0.194 | 0.199 | 0.204  | 0.211 | 0.219 |
|                                               | Q2: 15 - 21   | 0.205 | 0.193 | 0.199 | 0.204  | 0.210 | 0.221 |
|                                               | Q3: 22 - 34   | 0.206 | 0.189 | 0.197 | 0.205  | 0.214 | 0.224 |
|                                               | Q4: 35 - 127  | 0.204 | 0.181 | 0.194 | 0.202  | 0.212 | 0.230 |
| Three-Year Actual                             | Vol. Quartile |       |       |       |        |       |       |
|                                               | Q1: 10 - 14   | 0.216 | 0.088 | 0.156 | 0.208  | 0.267 | 0.370 |
|                                               | Q2: 15 - 21   | 0.211 | 0.100 | 0.166 | 0.208  | 0.249 | 0.344 |
|                                               | Q3: 22 - 34   | 0.200 | 0.113 | 0.163 | 0.198  | 0.237 | 0.295 |
|                                               | Q4: 35 - 127  | 0.198 | 0.130 | 0.167 | 0.190  | 0.225 | 0.286 |
| Three-Year Risk-Standardized Rate (Using O/E) | Vol. Quartile |       |       |       |        |       |       |
|                                               | Q1: 10 - 14   | 0.209 | 0.081 | 0.154 | 0.202  | 0.253 | 0.363 |
|                                               | Q2: 15 - 21   | 0.209 | 0.108 | 0.168 | 0.204  | 0.255 | 0.327 |
|                                               | Q3: 22 - 34   | 0.203 | 0.118 | 0.165 | 0.202  | 0.241 | 0.296 |
|                                               | Q4: 35 - 127  | 0.200 | 0.136 | 0.171 | 0.197  | 0.226 | 0.273 |
| Three-Year Predicted                          | Vol. Quartile |       |       |       |        |       |       |
|                                               | Q1: 10 - 14   | 0.213 | 0.179 | 0.195 | 0.213  | 0.229 | 0.252 |
|                                               | Q2: 15 - 21   | 0.209 | 0.177 | 0.192 | 0.207  | 0.223 | 0.244 |
|                                               | Q3: 22 - 34   | 0.202 | 0.170 | 0.189 | 0.201  | 0.214 | 0.238 |
|                                               | Q4: 35 - 127  | 0.201 | 0.170 | 0.184 | 0.198  | 0.215 | 0.238 |
| Three-Year Risk-Standardized Rate (Using P/E) | Vol. Quartile |       |       |       |        |       |       |
|                                               | Q1: 10 - 14   | 0.206 | 0.186 | 0.198 | 0.205  | 0.214 | 0.228 |
|                                               | Q2: 15 - 21   | 0.206 | 0.184 | 0.198 | 0.205  | 0.215 | 0.231 |
|                                               | Q3: 22 - 34   | 0.204 | 0.179 | 0.194 | 0.203  | 0.213 | 0.231 |
|                                               | Q4: 35 - 127  | 0.203 | 0.176 | 0.190 | 0.201  | 0.215 | 0.237 |

# Table 13: AMI 30-Day Readmission Rate -- Distribution of Actual and Risk-Standardized Rates By Hospital AMI Volume Quartile

#### 8. Reliability Testing

Reliability was assessed by correlating the one-year measures for 2007 with both the one-year measures for 2006 and the three-year measures ending with 2006. In each case, both Pearson and Spearman correlations were calculated, the latter being less susceptible to outliers. As an additional assessment, measures were grouped in quintiles and weighted kappa statistics were computed. The results are in Table 9. Correlation statistics between the three-year average ending in 2007 and the three-year average ending in 2006 are not calculated because the two measures share two years of data in common.

|                          | One Year        | (2006)              | Three Yea          | rs (2004-6)         |  |  |
|--------------------------|-----------------|---------------------|--------------------|---------------------|--|--|
| Statistic                | Obs./Exp. Ratio | Pred./Exp.<br>Ratio | Obs./Exp.<br>Ratio | Pred./Exp.<br>Ratio |  |  |
| Correlation Coefficients |                 |                     |                    |                     |  |  |
| Pearson                  | 0.046 (p=0.119) | 0.105 (p<.001)      | 0.070 (p=0.019)    | 0.164 (p<.001)      |  |  |
| • Spearman               | 0.033 (p=0.263) | 0.093 (p=0.002)     | 0.055 (p=0.067)    | 0.126 (p<.001)      |  |  |
| Kappa Statistic          |                 |                     |                    |                     |  |  |
| Weighted Kappa           | 0.033 (p=0.055) | 0.057 (p=0.003)     | 0.031 (p=0.064)    | 0.069 (p<.001)      |  |  |
| • 95% CI – Lower         | -0.008          | 0.015               | -0.010             | 0.028               |  |  |
| • 95% CI Upper           | 0.074           | 0.099               | 0.072              | 0.110               |  |  |

#### Table 14: AMI 30-Day Readmission Rate -- Reliability When Comparing Across Years

#### Reference

Yale University/Yale-New Haven Hospital Center for Outcomes Research and Evaluation (YNHH-CORE). "Hospital 30-Day Acute Myocardial Infarction Readmission Measure Methodology". Prepared for Centers for Medicare & Medicaid Services (CMS), June 9, 2008.

#### Appendix B-1 Histograms of Hospital 30-Day AMI Readmission Rate Distributions

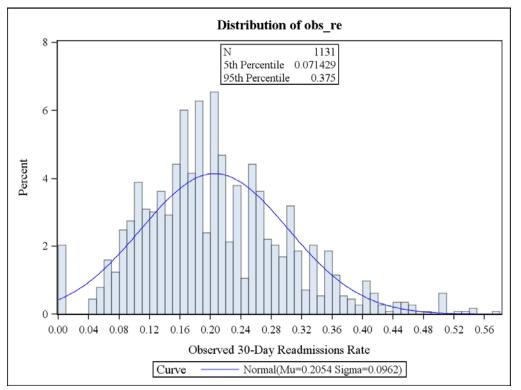
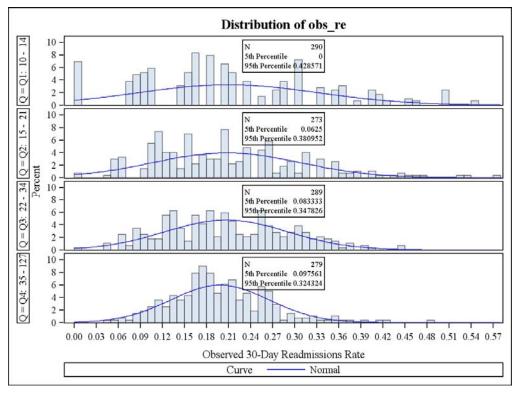




Figure 9: Distribution of Hospital Actual (unadjusted) 30-Day AMI Readmission Rates (One Year – 2006)

Figure 10: Distribution of Hospital Actual (unadjusted) 30-Day AMI Readmission Rates (One Year – 2006) -- By Hospital HF Volume Quartile



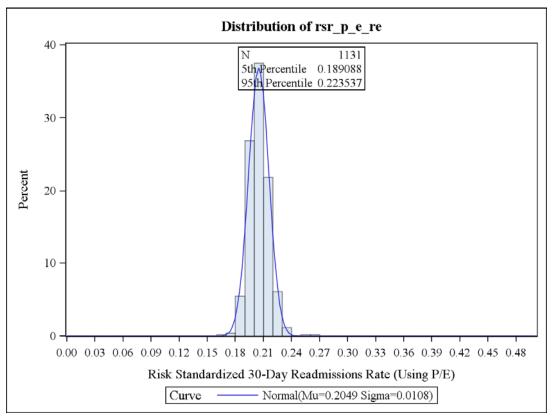
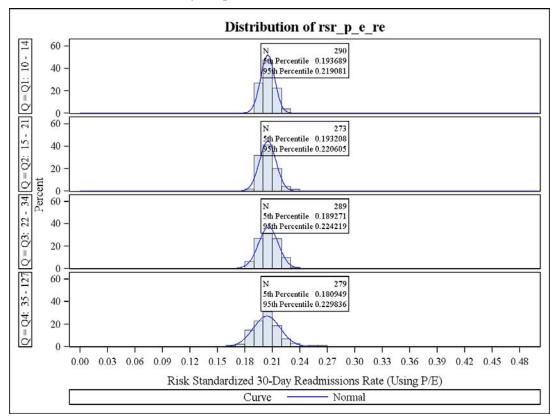




Figure 11: Distribution of Hospital Risk Adjusted 30-Day AMI Readmission Rates (Using P/E Method, One Year – 2006)

Figure 12: : Distribution of Hospital Risk Adjusted 30-Day AMI Readmission Rates (Using P/E Method, One Year – 2006) -- By Hospital HF Volume Quartile



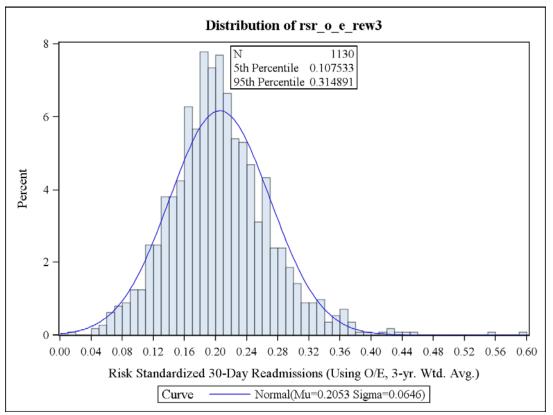
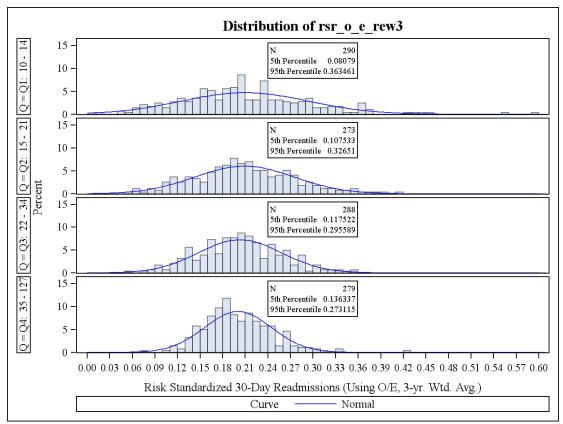




Figure 13: Distribution of Hospital Risk Adjusted 30-Day AMI Readmission Rates (Using O/E Method, Three Years – 2004-6)

Figure 14: : Distribution of Hospital Risk Adjusted 30-Day AMI Readmission Rates (Using O/E Method, Three Years – 2004-6) -- By Hospital HF Volume Quartile



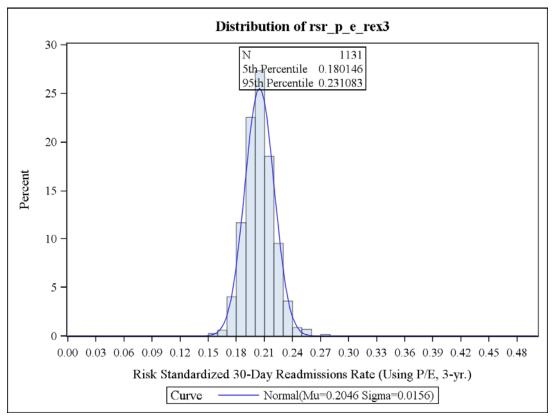
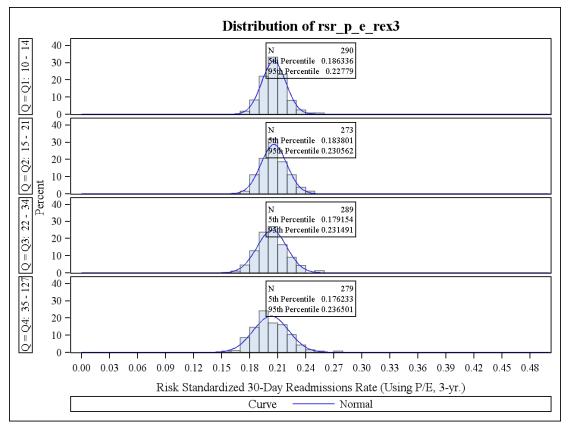




Figure 15: Distribution of Hospital Risk Adjusted 30-Day AMI Readmission Rates (Using P/E Method, Three Years – 2004-6)

Figure 16: : Distribution of Hospital Risk Adjusted 30-Day AMI Readmission Rates (Using P/E Method, Three Years – 2004-6) -- By Hospital HF Volume Quartile



| Year | dgns_cd1 | Dx1_Desc                 | Freq | Pct  | Cum Freq | Cum Pct |
|------|----------|--------------------------|------|------|----------|---------|
| 2004 | 78650    | CHEST PAIN NOS           | 263  | 7.15 | 263      | 7.15    |
| 2004 | 4280     | CHF NOS                  | 189  | 5.14 | 452      | 12.29   |
| 2004 | 78659    | CHEST PAIN NEC           | 150  | 4.08 | 602      | 16.37   |
| 2004 | 4275     | CARDIAC ARREST           | 128  | 3.48 | 730      | 19.85   |
| 2004 | 5990     | URIN TRACT INFECTION NOS | 88   | 2.39 | 818      | 22.24   |
| 2004 | 7802     | SYNCOPE AND COLLAPSE     | 75   | 2.04 | 893      | 24.28   |
| 2004 | 7847     | EPISTAXIS                | 62   | 1.69 | 955      | 25.97   |
| 2004 | 78609    | RESPIRATORY ABNORM NEC   | 62   | 1.69 | 1,017    | 27.65   |
| 2004 | 7804     | DIZZINESS AND GIDDINESS  | 57   | 1.55 | 1,074    | 29.20   |
| 2004 | 78820    | RETENTION URINE NOS      | 55   | 1.50 | 1,129    | 30.70   |
| 2004 | 78079    | MALAISE AND FATIGUE NEC  | 49   | 1.33 | 1,178    | 32.03   |
| 2004 | 41401    | CRNRY ATHRSCL NATVE VSSL | 48   | 1.31 | 1,226    | 33.33   |
| 2004 | 7295     | PAIN IN LIMB             | 44   | 1.20 | 1,270    | 34.53   |
| 2004 | 486      | PNEUMONIA, ORGANISM NOS  | 42   | 1.14 | 1,312    | 35.67   |
| 2004 | 4019     | HYPERTENSION NOS         | 42   | 1.14 | 1,354    | 36.81   |
| 2004 | 25080    | DMII OTH NT ST UNCNTRLD  | 41   | 1.11 | 1,395    | 37.93   |
| 2004 | 78652    | PAINFUL RESPIRATION      | 41   | 1.11 | 1,436    | 39.04   |
| 2004 | 4139     | ANGINA PECTORIS NEC/NOS  | 37   | 1.01 | 1,473    | 40.05   |
| 2004 | 2765     | HYPOVOLEMIA              | 36   | 0.98 | 1,509    | 41.03   |
| 2004 | 41400    | COR ATH UNSP VSL NTV/GFT | 36   | 0.98 | 1,545    | 42.01   |
| 2004 | 42789    | CARDIAC DYSRHYTHMIAS NEC | 31   | 0.84 | 1,576    | 42.85   |
| 2004 | 78605    | SHORTNESS OF BREATH      | 31   | 0.84 | 1,607    | 43.69   |
| 2004 | 42731    | ATRIAL FIBRILLATION      | 29   | 0.79 | 1,636    | 44.48   |
| 2004 | 78900    | ABDMNAL PAIN UNSPCF SITE | 29   | 0.79 | 1,665    | 45.27   |
| 2004 | 920      | CONTUSION FACE/SCALP/NCK | 28   | 0.76 | 1,693    | 46.03   |
| 2004 | 7851     | PALPITATIONS             | 28   | 0.76 | 1,721    | 46.79   |
| 2004 | 78701    | NAUSEA WITH VOMITING     | 28   | 0.76 | 1,749    | 47.55   |
| 2004 | 4111     | INTERMED CORONARY SYND   | 27   | 0.73 | 1,776    | 48.29   |
| 2004 | 49121    | OBS CHR BRONC W(AC) EXAC | 26   | 0.71 | 1,802    | 48.99   |
| 2004 | 56400    | CONSTIPATION NOS         | 25   | 0.68 | 1,827    | 49.67   |
| 2004 | 5589     | NONINF GASTROENTERIT NEC | 24   | 0.65 | 1,851    | 50.33   |

| Year | dgns_cd1 | Dx1_Desc                 | Freq | Pct  | Cum Freq | Cum Pct |
|------|----------|--------------------------|------|------|----------|---------|
| 2005 | 78650    | CHEST PAIN NOS           | 264  | 7.50 | 264      | 7.50    |
| 2005 | 4280     | CHF NOS                  | 178  | 5.06 | 442      | 12.56   |
| 2005 | 78659    | CHEST PAIN NEC           | 155  | 4.40 | 597      | 16.96   |
| 2005 | 4275     | CARDIAC ARREST           | 116  | 3.30 | 713      | 20.26   |
| 2005 | 5990     | URIN TRACT INFECTION NOS | 75   | 2.13 | 788      | 22.39   |
| 2005 | 7847     | EPISTAXIS                | 72   | 2.05 | 860      | 24.43   |
| 2005 | 78609    | RESPIRATORY ABNORM NEC   | 64   | 1.82 | 924      | 26.25   |
| 2005 | 7802     | SYNCOPE AND COLLAPSE     | 63   | 1.79 | 987      | 28.04   |
| 2005 | 25080    | DMII OTH NT ST UNCNTRLD  | 57   | 1.62 | 1,044    | 29.66   |
| 2005 | 7295     | PAIN IN LIMB             | 56   | 1.59 | 1,100    | 31.25   |
| 2005 | 7804     | DIZZINESS AND GIDDINESS  | 54   | 1.53 | 1,154    | 32.78   |
| 2005 | 4139     | ANGINA PECTORIS NEC/NOS  | 49   | 1.39 | 1,203    |         |
| 2005 | 78079    | MALAISE AND FATIGUE NEC  | 49   | 1.39 | 1,252    | 35.57   |
| 2005 | 78605    | SHORTNESS OF BREATH      | 44   | 1.25 | 1,296    | 36.82   |
| 2005 | 78820    | RETENTION URINE NOS      | 41   | 1.16 | 1,337    | 37.98   |
| 2005 | 41401    | CRNRY ATHRSCL NATVE VSSL | 39   | 1.11 | 1,376    |         |
| 2005 | 486      | PNEUMONIA, ORGANISM NOS  | 38   | 1.08 | 1,414    |         |
| 2005 | 56400    | CONSTIPATION NOS         | 38   | 1.08 | 1,452    | 41.25   |
| 2005 | 41400    | COR ATH UNSP VSL NTV/GFT | 37   | 1.05 | 1,489    |         |
| 2005 | 78652    | PAINFUL RESPIRATION      | 35   | 0.99 | 1,524    | 43.30   |
| 2005 | 4019     | HYPERTENSION NOS         | 34   | 0.97 | 1,558    | 44.26   |
| 2005 | 4111     | INTERMED CORONARY SYND   | 34   | 0.97 | 1,592    | 45.23   |
| 2005 | 42731    | ATRIAL FIBRILLATION      | 31   | 0.88 | 1,623    | 46.11   |
| 2005 | 42789    | CARDIAC DYSRHYTHMIAS NEC | 31   | 0.88 | 1,654    | 46.99   |
| 2005 | 2765     | HYPOVOLEMIA              | 28   | 0.80 | 1,682    | 47.78   |
| 2005 | 78900    | ABDMNAL PAIN UNSPCF SITE | 25   | 0.71 | 1,707    | 48.49   |
| 2005 | 4359     | TRANS CEREB ISCHEMIA NOS | 24   | 0.68 | 1,731    | 49.18   |
| 2005 | 4589     | HYPOTENSION NOS          | 24   | 0.68 | 1,755    | 49.86   |
| 2005 | 5997     | HEMATURIA                | 24   | 0.68 | 1,779    | 50.54   |

| Year | dgns_cd1 | Dx1_Desc                 | Freq | Pct  | Cum Freq | Cum Pct |
|------|----------|--------------------------|------|------|----------|---------|
| 2006 | 78650    | CHEST PAIN NOS           | 229  | 7.38 | 229      | 7.38    |
| 2006 | 78659    | CHEST PAIN NEC           | 156  | 5.03 | 385      | 12.40   |
| 2006 | 4280     | CHF NOS                  | 138  | 4.45 | 523      | 16.85   |
| 2006 | 4275     | CARDIAC ARREST           | 100  | 3.22 | 623      | 20.07   |
| 2006 | 7847     | EPISTAXIS                | 72   | 2.32 | 695      | 22.39   |
| 2006 | 5990     | URIN TRACT INFECTION NOS | 67   | 2.16 | 762      | 24.55   |
| 2006 | 7802     | SYNCOPE AND COLLAPSE     | 66   | 2.13 | 828      | 26.68   |
| 2006 | 78079    | MALAISE AND FATIGUE NEC  | 65   | 2.09 | 893      | 28.77   |
| 2006 | 78609    | RESPIRATORY ABNORM NEC   | 50   | 1.61 | 943      | 30.38   |
| 2006 | 4139     | ANGINA PECTORIS NEC/NOS  | 42   | 1.35 | 985      | 31.73   |
| 2006 | 78820    | RETENTION URINE NOS      | 42   | 1.35 | 1,027    | 33.09   |
| 2006 | 25080    | DMII OTH NT ST UNCNTRLD  | 39   | 1.26 | 1,066    | 34.34   |
| 2006 | 56400    | CONSTIPATION NOS         | 39   | 1.26 | 1,105    | 35.60   |
| 2006 | 78605    | SHORTNESS OF BREATH      | 38   | 1.22 | 1,143    | 36.82   |
| 2006 | 4019     | HYPERTENSION NOS         | 37   | 1.19 | 1,180    | 38.02   |
| 2006 | 41401    | CRNRY ATHRSCL NATVE VSSL | 37   | 1.19 | 1,217    | 39.21   |
| 2006 | 7804     | DIZZINESS AND GIDDINESS  | 33   | 1.06 | 1,250    | 40.27   |
| 2006 | 78652    | PAINFUL RESPIRATION      | 33   | 1.06 | 1,283    | 41.33   |
| 2006 | 7295     | PAIN IN LIMB             | 31   | 1.00 | 1,314    | 42.33   |
| 2006 | 27651    | DEHYDRATION              | 31   | 1.00 | 1,345    | 43.33   |
| 2006 | 78900    | ABDMNAL PAIN UNSPCF SITE | 29   | 0.93 | 1,374    | 44.27   |
| 2006 | 99812    | HEMATOMA COMPLIC PROC    | 28   | 0.90 | 1,402    | 45.17   |
| 2006 | 7851     | PALPITATIONS             | 27   | 0.87 | 1,429    | 46.04   |
| 2006 | 42731    | ATRIAL FIBRILLATION      | 27   | 0.87 | 1,456    | 46.91   |
| 2006 | 486      | PNEUMONIA, ORGANISM NOS  | 24   | 0.77 | 1,480    | 47.68   |
| 2006 | 7823     | EDEMA                    | 24   | 0.77 | 1,504    | 48.45   |
| 2006 | 5997     | HEMATURIA                | 22   | 0.71 | 1,526    | 49.16   |
| 2006 | 4111     | INTERMED CORONARY SYND   | 21   | 0.68 | 1,547    | 49.84   |
| 2006 | 5589     | NONINF GASTROENTERIT NEC | 21   | 0.68 | 1,568    | 50.52   |

| Year | dgns_cd1 | Dx1_Desc                 | Freq | Pct  | Cum Freq | Cum Pct |
|------|----------|--------------------------|------|------|----------|---------|
| 2007 | 78650    | CHEST PAIN NOS           | 218  | 7.59 | 218      | 7.59    |
| 2007 | 78659    | CHEST PAIN NEC           | 138  | 4.81 | 356      | 12.40   |
| 2007 | 4280     | CHF NOS                  | 122  | 4.25 | 478      | 16.64   |
| 2007 | 4275     | CARDIAC ARREST           | 89   | 3.10 | 567      | 19.74   |
| 2007 | 5990     | URIN TRACT INFECTION NOS | 65   | 2.26 | 632      | 22.01   |
| 2007 | 7847     | EPISTAXIS                | 63   | 2.19 | 695      | 24.20   |
| 2007 | 78079    | MALAISE AND FATIGUE NEC  | 60   | 2.09 | 755      | 26.29   |
| 2007 | 7802     | SYNCOPE AND COLLAPSE     | 59   | 2.05 | 814      | 28.34   |
| 2007 | 78609    | RESPIRATORY ABNORM NEC   | 53   | 1.85 | 867      | 30.19   |
| 2007 | 25080    | DMII OTH NT ST UNCNTRLD  | 49   | 1.71 | 916      | 31.89   |
| 2007 | 4019     | HYPERTENSION NOS         | 44   | 1.53 | 960      | 33.43   |
| 2007 | 7804     | DIZZINESS AND GIDDINESS  | 41   | 1.43 | 1,001    | 34.85   |
| 2007 | 41401    | CRNRY ATHRSCL NATVE VSSL | 37   | 1.29 | 1,038    | 36.14   |
| 2007 | 78820    | RETENTION URINE NOS      | 37   | 1.29 | 1,075    | 37.43   |
| 2007 | 7295     | PAIN IN LIMB             | 35   | 1.22 | 1,110    | 38.65   |
| 2007 | 78605    | SHORTNESS OF BREATH      | 31   | 1.08 | 1,141    | 39.73   |
| 2007 | 78652    | PAINFUL RESPIRATION      | 31   | 1.08 | 1,172    | 40.81   |
| 2007 | 4589     | HYPOTENSION NOS          | 30   | 1.04 | 1,202    | 41.85   |
| 2007 | 4139     | ANGINA PECTORIS NEC/NOS  | 28   | 0.97 | 1,230    | 42.83   |
| 2007 | 56400    | CONSTIPATION NOS         | 27   | 0.94 | 1,257    | 43.77   |
| 2007 | 42731    | ATRIAL FIBRILLATION      | 26   | 0.91 | 1,283    | 44.67   |
| 2007 | 49121    | OBS CHR BRONC W(AC) EXAC | 26   | 0.91 | 1,309    | 45.58   |
| 2007 | 486      | PNEUMONIA, ORGANISM NOS  | 25   | 0.87 | 1,334    | 46.45   |
| 2007 | 5997     | HEMATURIA                | 24   | 0.84 | 1,358    | 47.28   |
| 2007 | 7851     | PALPITATIONS             | 22   | 0.77 | 1,380    | 48.05   |
| 2007 | 920      | CONTUSION FACE/SCALP/NCK | 21   | 0.73 | 1,401    | 48.78   |
| 2007 | 41400    | COR ATH UNSP VSL NTV/GFT | 21   | 0.73 | 1,422    | 49.51   |
| 2007 | 78900    | ABDMNAL PAIN UNSPCF SITE | 21   | 0.73 | 1,443    | 50.24   |

| Year | dgns_cd1 | Dx1_Desc                    | Freq | Pct   | Cum Freq | Cum<br>Pct |
|------|----------|-----------------------------|------|-------|----------|------------|
| 2004 | 4280     | CHF NOS                     | 978  | 12.67 | 978      | 12.67      |
| 2004 | 78650    | CHEST PAIN NOS              | 225  | 2.91  | 1,203    | 15.58      |
| 2004 | 78609    | RESPIRATORY ABNORM          | 216  | 2.80  | 1,419    | 18.38      |
|      |          | NEC                         |      |       |          |            |
| 2004 | 4275     | CARDIAC ARREST              | 204  | 2.64  | 1,623    | 21.03      |
| 2004 | 5990     | URIN TRACT INFECTION        | 173  | 2.24  | 1,796    | 23.27      |
|      |          | NOS                         |      |       |          |            |
| 2004 | 78079    | MALAISE AND FATIGUE         | 148  | 1.92  | 1,944    | 25.18      |
|      |          | NEC                         | 1.10 | 1.00  | 0.000    | 07.40      |
| 2004 | 78605    | SHORTNESS OF BREATH         | 148  | 1.92  | 2,092    | 27.10      |
| 2004 | 7847     |                             | 147  | 1.90  | 2,239    | 29.01      |
| 2004 | 78659    |                             | 141  | 1.83  | 2,380    | 30.83      |
| 2004 | 7802     | SYNCOPE AND<br>COLLAPSE     | 133  | 1.72  | 2,513    | 32.56      |
| 2004 | 49121    | OBS CHR BRONC W(AC)         | 129  | 1.67  | 2,642    | 34.23      |
|      |          | EXAC                        |      |       |          |            |
| 2004 | 25080    | DMII OTH NT ST              | 104  | 1.35  | 2,746    | 35.57      |
|      |          | UNCNTRLD                    |      |       |          |            |
| 2004 | 2765     | HYPOVOLEMIA                 | 102  | 1.32  | 2,848    | 36.90      |
| 2004 | 78820    | RETENTION URINE NOS         | 95   | 1.23  | 2,943    | 38.13      |
| 2004 | 56400    | CONSTIPATION NOS            | 94   | 1.22  | 3,037    | 39.34      |
| 2004 | 42731    | ATRIAL FIBRILLATION         | 92   | 1.19  | 3,129    | 40.54      |
| 2004 | 7804     |                             | 90   | 1.17  | 3,219    | 41.70      |
| 0004 | 000      | GIDDINESS                   | 07   | 1 1 2 | 2 200    | 40.00      |
| 2004 | 920      | CONTUSION<br>FACE/SCALP/NCK | 87   | 1.13  | 3,306    | 42.83      |
| 2004 | 78900    | ABDMNAL PAIN UNSPCF         | 80   | 1.04  | 3,386    | 43.87      |
|      |          | SITE                        |      |       | ,        |            |
| 2004 | 486      | PNEUMONIA, ORGANISM         | 67   | 0.87  | 3,453    | 44.73      |
|      |          | NOS                         |      |       |          |            |
| 2004 | 7823     | EDEMA                       | 67   | 0.87  | 3,520    | 45.60      |
| 2004 | 4019     | HYPERTENSION NOS            | 60   | 0.78  | 3,580    | 46.38      |
| 2004 | 78652    | PAINFUL RESPIRATION         | 56   | 0.73  | 3,636    | 47.10      |
| 2004 | 5997     | HEMATURIA                   | 53   | 0.69  | 3,689    | 47.79      |
| 2004 | 496      |                             | 52   | 0.67  | 3,741    | 48.46      |
|      |          | NEC                         |      |       |          | 4 - 4 -    |
| 2004 | 7295     | PAIN IN LIMB                | 51   | 0.66  | 3,792    | 49.13      |
| 2004 | 7242     | LUMBAGO                     | 46   | 0.60  | 3,838    | 49.72      |
| 2004 | 4589     | HYPOTENSION NOS             | 45   | 0.58  | 3,883    | 50.30      |

| Year | dgns_cd1 | Dx1_Desc                 | Freq | Pct   | Cum Freq | Cum Pct |
|------|----------|--------------------------|------|-------|----------|---------|
| 2005 | 4280     | CHF NOS                  | 868  | 11.15 | 868      | 11.15   |
| 2005 | 78650    | CHEST PAIN NOS           | 244  | 3.13  | 1,112    | 14.29   |
| 2005 | 78609    | RESPIRATORY ABNORM NEC   | 209  | 2.68  | 1,321    | 16.97   |
| 2005 | 4275     | CARDIAC ARREST           | 207  | 2.66  | 1,528    | 19.63   |
| 2005 | 5990     | URIN TRACT INFECTION NOS | 199  | 2.56  | 1,727    | 22.19   |
| 2005 | 7847     | EPISTAXIS                | 161  | 2.07  | 1,888    | 24.25   |
| 2005 | 78605    | SHORTNESS OF BREATH      | 156  | 2.00  | 2,044    | 26.26   |
| 2005 | 78079    | MALAISE AND FATIGUE NEC  | 149  | 1.91  | 2,193    | 28.17   |
| 2005 | 25080    | DMII OTH NT ST UNCNTRLD  | 139  | 1.79  | 2,332    | 29.96   |
| 2005 | 7802     | SYNCOPE AND COLLAPSE     | 133  | 1.71  | 2,465    | 31.67   |
| 2005 | 49121    | OBS CHR BRONC W(AC) EXAC | 126  | 1.62  | 2,591    | 33.29   |
| 2005 | 78659    | CHEST PAIN NEC           | 126  | 1.62  | 2,717    | 34.90   |
| 2005 | 56400    | CONSTIPATION NOS         | 101  | 1.30  | 2,818    | 36.20   |
| 2005 | 2765     | HYPOVOLEMIA              | 92   | 1.18  | 2,910    | 37.38   |
| 2005 | 920      | CONTUSION FACE/SCALP/NCK | 91   | 1.17  | 3,001    | 38.55   |
| 2005 | 42731    | ATRIAL FIBRILLATION      | 91   | 1.17  | 3,092    | 39.72   |
| 2005 | 78820    | RETENTION URINE NOS      | 91   | 1.17  | 3,183    | 40.89   |
| 2005 | 486      | PNEUMONIA, ORGANISM NOS  | 89   | 1.14  | 3,272    | 42.03   |
| 2005 | 7804     | DIZZINESS AND GIDDINESS  | 88   | 1.13  | 3,360    | 43.17   |
| 2005 | 78900    | ABDMNAL PAIN UNSPCF SITE | 82   | 1.05  | 3,442    | 44.22   |
| 2005 | 4019     | HYPERTENSION NOS         | 79   | 1.01  | 3,521    | 45.23   |
| 2005 | 4589     | HYPOTENSION NOS          | 70   | 0.90  | 3,591    | 46.13   |
| 2005 | 7295     | PAIN IN LIMB             | 65   | 0.84  | 3,656    | 46.97   |
| 2005 | 7823     | EDEMA                    | 63   | 0.81  | 3,719    | 47.78   |
| 2005 | 496      | CHR AIRWAY OBSTRUCT NEC  | 61   | 0.78  | 3,780    | 48.56   |
| 2005 | 4660     | ACUTE BRONCHITIS         | 59   | 0.76  | 3,839    | 49.32   |
| 2005 | 8730     | OPEN WOUND OF SCALP      | 56   | 0.72  | 3,895    | 50.04   |

| Year | dgns_cd1 | Dx1_Desc                 | Freq | Pct   | Cum Freq | Cum Pct |
|------|----------|--------------------------|------|-------|----------|---------|
| 2006 | 4280     | CHF NOS                  | 834  | 11.93 | 834      | 11.93   |
| 2006 | 78650    | CHEST PAIN NOS           | 224  | 3.20  | 1,058    | 15.14   |
| 2006 | 4275     | CARDIAC ARREST           | 211  | 3.02  | 1,269    | 18.15   |
| 2006 | 78609    | RESPIRATORY ABNORM NEC   | 208  | 2.98  | 1,477    | 21.13   |
| 2006 | 5990     | URIN TRACT INFECTION NOS | 187  | 2.68  | 1,664    | 23.81   |
| 2006 | 25080    | DMII OTH NT ST UNCNTRLD  | 144  | 2.06  | 1,808    | 25.87   |
| 2006 | 7847     | EPISTAXIS                | 140  | 2.00  | 1,948    | 27.87   |
| 2006 | 7802     | SYNCOPE AND COLLAPSE     | 131  | 1.87  | 2,079    | 29.74   |
| 2006 | 78079    | MALAISE AND FATIGUE NEC  | 127  | 1.82  | 2,206    | 31.56   |
| 2006 | 78605    | SHORTNESS OF BREATH      | 113  | 1.62  | 2,319    | 33.18   |
| 2006 | 78659    | CHEST PAIN NEC           | 111  | 1.59  | 2,430    | 34.76   |
| 2006 | 78820    | RETENTION URINE NOS      | 96   | 1.37  | 2,526    | 36.14   |
| 2006 | 49121    | OBS CHR BRONC W(AC) EXAC | 93   | 1.33  | 2,619    | 37.47   |
| 2006 | 27651    | DEHYDRATION              | 88   | 1.26  | 2,707    | 38.73   |
| 2006 | 56400    | CONSTIPATION NOS         | 81   | 1.16  | 2,788    | 39.89   |
| 2006 | 7804     | DIZZINESS AND GIDDINESS  | 80   | 1.14  | 2,868    | 41.03   |
| 2006 | 920      | CONTUSION FACE/SCALP/NCK | 76   | 1.09  | 2,944    | 42.12   |
| 2006 | 78900    | ABDMNAL PAIN UNSPCF SITE | 74   | 1.06  | 3,018    | 43.18   |
| 2006 | 42731    | ATRIAL FIBRILLATION      | 69   | 0.99  | 3,087    | 44.16   |
| 2006 | 7823     | EDEMA                    | 68   | 0.97  | 3,155    | 45.14   |
| 2006 | 486      | PNEUMONIA, ORGANISM NOS  | 67   | 0.96  | 3,222    | 46.09   |
| 2006 | 4019     | HYPERTENSION NOS         | 57   | 0.82  | 3,279    | 46.91   |
| 2006 | 7295     | PAIN IN LIMB             | 56   | 0.80  | 3,335    | 47.71   |
| 2006 | 5589     | NONINF GASTROENTERIT NEC | 51   | 0.73  | 3,386    | 48.44   |
| 2006 | 95901    | HEAD INJURY NOS          | 48   | 0.69  | 3,434    | 49.13   |
| 2006 | 496      | CHR AIRWAY OBSTRUCT NEC  | 47   | 0.67  | 3,481    | 49.80   |
| 2006 | 4589     | HYPOTENSION NOS          | 46   | 0.66  | 3,527    | 50.46   |

| Year | dgns_cd1 | Dx1_Desc                 | Freq | Pct   | Cum Freq | Cum Pct |
|------|----------|--------------------------|------|-------|----------|---------|
| 2007 | 4280     | CHF NOS                  | 675  | 11.22 | 675      | 11.22   |
| 2007 | 78650    | CHEST PAIN NOS           | 183  | 3.04  | 858      | 14.26   |
| 2007 | 78609    | RESPIRATORY ABNORM NEC   | 173  | 2.88  | 1,031    | 17.14   |
| 2007 | 5990     | URIN TRACT INFECTION NOS | 165  | 2.74  | 1,196    | 19.88   |
| 2007 | 4275     | CARDIAC ARREST           | 153  | 2.54  | 1,349    | 22.43   |
| 2007 | 25080    | DMII OTH NT ST UNCNTRLD  | 125  | 2.08  | 1,474    | 24.51   |
| 2007 | 7847     | EPISTAXIS                | 121  | 2.01  | 1,595    | 26.52   |
| 2007 | 78605    | SHORTNESS OF BREATH      | 111  | 1.85  | 1,706    | 28.36   |
| 2007 | 78079    | MALAISE AND FATIGUE NEC  | 109  | 1.81  | 1,815    | 30.17   |
| 2007 | 78659    | CHEST PAIN NEC           | 94   | 1.56  | 1,909    | 31.74   |
| 2007 | 7802     | SYNCOPE AND COLLAPSE     | 80   | 1.33  | 1,989    |         |
| 2007 | 42731    | ATRIAL FIBRILLATION      | 80   | 1.33  | 2,069    |         |
| 2007 | 49121    | OBS CHR BRONC W(AC) EXAC | 79   | 1.31  | 2,148    |         |
| 2007 | 27651    | DEHYDRATION              | 78   | 1.30  | 2,226    |         |
| 2007 | 920      | CONTUSION FACE/SCALP/NCK | 75   | 1.25  | 2,301    |         |
| 2007 | 78820    | RETENTION URINE NOS      | 74   | 1.23  | 2,375    |         |
| 2007 | 7804     | DIZZINESS AND GIDDINESS  | 69   | 1.15  | 2,444    |         |
| 2007 | 78900    | ABDMNAL PAIN UNSPCF SITE | 68   | 1.13  | 2,512    |         |
| 2007 | 56400    | CONSTIPATION NOS         | 66   | 1.10  |          |         |
| 2007 | 486      | PNEUMONIA, ORGANISM NOS  | 62   | 1.03  | 2,640    |         |
| 2007 | 7823     | EDEMA                    | 58   | 0.96  | 2,698    | 44.85   |
| 2007 | 7295     | PAIN IN LIMB             | 55   | 0.91  | 2,753    |         |
| 2007 | 4019     | HYPERTENSION NOS         | 53   | 0.88  | 2,806    | 46.65   |
| 2007 | 95901    | HEAD INJURY NOS          | 52   | 0.86  | 2,858    |         |
| 2007 | 496      | CHR AIRWAY OBSTRUCT NEC  | 43   | 0.71  | 2,901    | 48.23   |
| 2007 | 4589     | HYPOTENSION NOS          | 43   | 0.71  | 2,944    | 48.94   |
| 2007 | 78097    | ALTERED MENTAL STATUS    | 43   | 0.71  | 2,987    | 49.66   |
| 2007 | 78652    | PAINFUL RESPIRATION      | 40   | 0.67  | 3,027    | 50.32   |

| Year=2006             | Provider A                    |      |       |          |         |
|-----------------------|-------------------------------|------|-------|----------|---------|
| dgns_cd1              | Dx1_Description               | Freq | Pct   | Cum Freq | Cum Pct |
| 2141                  | LIPOMA SKIN NEC               | 1    | 7.69  | 1        | 7.6     |
| 4139                  | ANGINA PECTORIS NEC/NOS       | 1    | 7.69  | 2        | 15.3    |
| 41401                 | CRNRY ATHRSCL NATVE VSSL      | 1    | 7.69  | 3        | 23.0    |
| 4280                  | CHF NOS                       | 1    | 7.69  | 4        | 30.7    |
| 4619                  | ACUTE SINUSITIS NOS           | 1    | 7.69  | 5        | 38.4    |
| 490                   | BRONCHITIS NOS                | 1    | 7.69  | 6        | 46.1    |
| 7840                  | HEADACHE                      | 1    | 7.69  | 7        | 53.8    |
| 78650                 | CHEST PAIN NOS                | 1    | 7.69  | 8        | 61.5    |
| 78900                 | ABDMNAL PAIN UNSPCF SITE      | 1    | 7.69  | 9        | 69.2    |
| 78902                 | ABDMNAL PAIN LFT UP QUAD      | 1    | 7.69  | 10       | 76.9    |
| 99674                 | COMP-OTH VASC DEV/GRAFT       | 1    | 7.69  | 11       | 84.6    |
| 99811                 | HEMORRHAGE COMPLIC PROC       | 1    | 7.69  | 12       | 92.3    |
| V583                  | ATTEN-SURG DRESSNG/SUTUR      | 1    | 7.69  | 13       | 1(      |
| /ear=2006<br>dgns_cd1 | Provider B<br>Dx1_Description | Freq | Pct   | Cum Freq | Cum Pct |
| dgns_cd1              | Dx1_Description               | Freq | Pct   | Cum Freq | Cum Pct |
| 78650                 | CHEST PAIN NOS                | 3    | 3 25  | 3        | 2       |
| 4280                  | CHF NOS                       | 2    | 16.67 | 5        | 41.6    |
| 4239                  | PERICARDIAL DISEASE NOS       | 1    | 8.33  | 6        | Ę       |
| 4589                  | HYPOTENSION NOS               | 1    | 8.33  | 7        | 58.3    |
| 53081                 | ESOPHAGEAL REFLUX             | 1    | 8.33  | 8        | 66.6    |
| 6823                  | CELLULITIS OF ARM             | 1    | 8.33  | 9        | -       |
| 78609                 | RESPIRATORY ABNORM NEC        | 1    | 8.33  | 10       | 83.3    |
| 78652                 | PAINFUL RESPIRATION           | 1    | 8.33  | 11       | 91.6    |
| 78659                 | CHEST PAIN NEC                | 1    | 8.33  | 12       | 10      |
| /ear=2006             | Provider C                    |      |       | 0 5      |         |
| dgns_cd1              | Dx1_Description               | Freq | Pct   | Cum Freq | Cum Pct |
| 41401                 | CRNRY ATHRSCL NATVE VSSL      | 2    |       | 2        | 16.0    |
| 78650                 | CHEST PAIN NOS                | 2    |       | 4        | 33.3    |
| 78659                 |                               | 2    |       | 6        | (       |
| 3698                  | VISUAL LOSS, ONE EYE NOS      | 1    | 0.00  | 7        | 58.3    |
| 41091                 | AMI NOS, INITIAL              | 1    | 0.00  | 8        | 66.6    |
| 4280                  | CHF NOS                       | 1    |       | 9        |         |
| 4359                  | TRANS CEREB ISCHEMIA NOS      | 1    |       | 10       | 83.3    |
| 5119                  | PLEURAL EFFUSION NOS          | 1    | 8.33  | 11       | 91.0    |
| 5119                  | SKIN SENSATION DISTURB        |      | 8.33  | 12       | _       |

| Selected pro | viders having 2006 HF Index Admission | s with a post-3    | 0 OP ED V | /isit    |         |
|--------------|---------------------------------------|--------------------|-----------|----------|---------|
| Year=2006    | Provider D                            |                    |           |          |         |
| dgns_cd1     | Dx1_Description                       | Freq               | Pct       | Cum Freq | Cum Pct |
| 4280         | CHF NOS                               | 3                  | 17.65     | 3        | 17.65   |
| 4275         | CARDIAC ARREST                        | 2                  | 11.76     | 5        | 29.41   |
| 78609        | RESPIRATORY ABNORM NEC                | 2                  | 11.76     | 7        | 41.18   |
| 486          | PNEUMONIA, ORGANISM NOS               | 1                  | 5.88      | 8        | 47.06   |
| 5990         | URIN TRACT INFECTION NOS              | 1                  | 5.88      | 9        | 52.94   |
| 7802         | SYNCOPE AND COLLAPSE                  | 1                  | 5.88      | 10       | 58.82   |
| 7804         | DIZZINESS AND GIDDINESS               | 1                  | 5.88      | 11       | 64.71   |
| 7821         | NONSPECIF SKIN ERUPT NEC              | 1                  | 5.88      | 12       | 70.59   |
| 87342        | OPEN WOUND OF FOREHEAD                | 1                  | 5.88      | 13       | 76.47   |
| 920          | CONTUSION FACE/SCALP/NCK              | 1                  | 5.88      | 14       | 82.35   |
| 92231        | BACK CONTUSION                        | 1                  | 5.88      | 15       | 88.24   |
| 9248         | MULTIPLE CONTUSIONS NEC               | 1                  | 5.88      | 16       | 94.12   |
| 9778         | POISON-MEDICINAL AGT NEC              | 1                  | 5.88      | 17       | 100     |
|              |                                       |                    |           |          |         |
|              |                                       |                    |           |          |         |
|              | Provider E                            | <b>F</b> reewooney | Dereent   |          | Cum Dat |
| dgns_cd1     | Dx1_Description                       | Frequency          | Percent   | Cum Freq | Cum Pct |
| 4280         |                                       | 3                  | 20        | 3        | 20      |
| 4241         | AORTIC VALVE DISORDER                 | 1                  | 6.67      | 4        | 26.67   |
| 4254         | PRIM CARDIOMYOPATHY NEC               | 1                  | 6.67      | 5        | 33.33   |
| 4580         | ORTHOSTATIC HYPOTENSION               | 1                  | 6.67      | 6        | 40      |
| 4659         | ACUTE URI NOS                         | 1                  | 6.67      | 7        | 46.67   |
| 5990         | URIN TRACT INFECTION NOS              | 1                  | 6.67      | 8        | 53.33   |
| 71941        | JOINT PAIN-SHLDER                     | 1                  | 6.67      | 9        | 60      |
| 78099        | OTHER GENERAL SYMPTOMS                | 1                  | 6.67      | 10       | 66.67   |
| 78609        | RESPIRATORY ABNORM NEC                | 1                  | 6.67      | 11       | 73.33   |
| 78650        | CHEST PAIN NOS                        | 1                  | 6.67      | 12       | 80      |
| 78652        | PAINFUL RESPIRATION                   | 1                  | 6.67      | 13       | 86.67   |
| 99672        | COMP-OTH CARDIAC DEVICE               | 1                  | 6.67      | 14       | 93.33   |
| V5881        | FIT/ADJ VASCULAR CATHETR              | 1                  | 6.67      | 15       | 100     |
|              |                                       |                    |           |          |         |
| Year=2006    |                                       |                    |           |          |         |
| dgns_cd1     | Dx1_Description                       | Freq               | Pct       | Cum Freq | Cum Pct |
| 25080        | DMII OTH NT ST UNCNTRLD               | 2                  | 14.29     | 2        | 14.29   |
| 4280         | CHF NOS                               | 2                  | 14.29     | 4        | 28.57   |
| 49121        | OBS CHR BRONC W(AC) EXAC              | 2                  | 14.29     | 6        | 42.86   |
| 25000        | DMII WO CMP NT ST UNCNTR              | 1                  | 7.14      | 7        | 50      |
| 5990         | URIN TRACT INFECTION NOS              | 1                  | 7.14      | 8        | 57.14   |
| 78820        | RETENTION URINE NOS                   | 1                  | 7.14      | 9        | 64.29   |
| 81221        | FX HUMERUS SHAFT-CLOSED               | 1                  | 7.14      | 10       | 71.43   |
| 8470         | SPRAIN OF NECK                        | 1                  | 7.14      | 11       | 78.57   |
| 9221         | CONTUSION OF CHEST WALL               | 1                  | 7.14      | 12       | 85.71   |
| 95901        | HEAD INJURY NOS                       | 1                  | 7.14      | 13       | 92.86   |
|              |                                       | 1                  |           | 14       | 100     |

|                  | Mean Readmission |       |        | Mean ED |       | Mean E&M |       | Mean Composite |       |       |       |       |
|------------------|------------------|-------|--------|---------|-------|----------|-------|----------------|-------|-------|-------|-------|
| Race Quartile    | White            | Black | Other* | White   | Black | Other    | White | Black          | Other | White | Black | Other |
| A 7 47           |                  |       |        |         |       |          |       |                |       |       |       |       |
| AMI              | 0.01             | 0.00  | 0.00   | 0.00    | 0.00  | 0.00     | 0.00  | 0.01           | 0.00  | 0.00  | 0.00  | 0.00  |
| First            | 0.21             | 0.20  |        | 0.08    |       |          | 0.82  |                | 0.80  | 0.00  | 0.00  |       |
| Second           | 0.20             | 0.20  | 0.20   | 0.08    | 0.08  | 0.08     | 0.82  | 0.82           | 0.82  | 0.01  | 0.01  | 0.00  |
| Third            | 0.20             | 0.21  | 0.20   | 0.08    | 0.08  | 0.08     | 0.82  | 0.82           | 0.82  | 0.00  | 0.01  | 0.0   |
| Fourth           | 0.20             | 0.21  | 0.21   | 0.09    | 0.08  | 0.08     | 0.81  | 0.81           | 0.83  | 0.00  | -0.01 | 0.0   |
| HF               |                  |       |        |         |       |          |       |                |       |       |       |       |
| First            | 0.22             | 0.22  | 0.22   | 0.08    | 0.08  | 0.08     | 0.80  | 0.81           | 0.80  | -0.02 | 0.01  | -0.02 |
| Second           | 0.22             | 0.22  | 0.22   | 0.08    | 0.08  | 0.08     | 0.82  | 0.82           | 0.81  | 0.00  | 0.01  | 0.0   |
| Third            | 0.22             | 0.22  | 0.22   | 0.08    | 0.08  | 0.08     | 0.82  | 0.82           | 0.82  | 0.02  | 0.01  | 0.0   |
| Fourth           | 0.22             | 0.22  | 0.22   | 0.08    | 0.08  | 0.08     | 0.81  | 0.80           | 0.82  | 0.01  | -0.02 | 0.0   |
| * Other = 1 - (W | hite + Blac      | ck)   |        |         |       |          |       |                |       |       |       |       |

Race Quartile is the ranking of hospitals for each measure by the cross-tab, the first is the lowest quartile and fourth is the highest. The reported rate is the mean within quartile for each race.

## Composite Scores, With Component Scores Heart Failure **Representative Sample of Hospitals**

| 0.199         0.190         0.051         0.782         0.0           0.164         0.206         0.070         0.851         0.0           0.145         0.201         0.063         0.799         0.0           0.111         0.214         0.067         0.829         0.0           0.111         0.214         0.067         0.829         0.0           0.111         0.217         0.062         0.825         0.0           0.103         0.208         0.053         0.764         0.0           0.006         0.193         0.070         0.755         0.0           0.087         0.201         0.070         0.755         0.0           0.081         0.202         0.066         0.810         0.0           0.063         0.209         0.068         0.760         0.0           0.052         0.208         0.083         0.772         0.0           0.047         0.212         0.071         0.758         0.0           0.042         0.219         0.072         0.784         0.0           0.033         0.209         0.072         0.731         0.0           0.021         0.212         <                                                   | Contribution to Composite |                 |                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|----------------------------------|
| Composite<br>ScoreReadmissions<br>(Pop.<br>Maint<br>0.881)Services<br>(Pop.<br>Meant<br>0.881)Services<br>Meant<br>0.881)Readmission<br>meant<br>0.8810.1990.01900.0500.7620.000.1610.0200.0630.7990.00.1110.0210.0620.7990.00.1110.0210.0620.8290.00.1110.0210.0620.8290.00.1020.0200.0700.7550.00.0030.0200.0870.8010.00.0040.0200.0870.8010.00.0050.0200.0810.0100.00.0050.0200.0810.0100.00.0050.0200.0810.0100.00.0050.0200.0810.0100.00.0050.0200.0810.0100.00.0050.0210.0170.0100.00.0130.0210.0170.0100.00.0130.0210.0160.0100.00.0130.0210.0160.0100.00.0140.0220.0210.0100.00.0150.0210.0210.0100.00.0160.0230.0710.00.00.0170.0240.0210.0710.00.0130.2240.0210.010.00.0140.2240.0710.00.00.0150.0240.0710.0 </th <th colspan="3">Score</th>                                                                                                                                                                                                                                                                                                                                                                                                                    | Score                     |                 |                                  |
| 0.164         0.206         0.070         0.851         0.0           0.145         0.201         0.63         0.799         0.0           0.131         0.202         0.071         0.814         0.0           0.111         0.214         0.067         0.829         0.0           0.111         0.217         0.062         0.825         0.0           0.0103         0.208         0.053         0.764         0.0           0.006         0.193         0.78         0.744         0.0           0.087         0.201         0.070         0.755         0.0           0.081         0.2020         0.066         0.810         0.0           0.063         0.209         0.068         0.760         0.0           0.052         0.208         0.083         0.772         0.0           0.047         0.212         0.071         0.758         0.0           0.042         0.219         0.072         0.784         0.0           0.033         0.201         0.084         0.734         0.0           0.042         0.219         0.072         0.731         0.0           0.021         0.216         <                                                   | ED<br>ons Visits          | E&M<br>Services | Number of<br>Index<br>Admissions |
| 0.145         0.201         0.063         0.799         0.0           0.131         0.202         0.071         0.814         0.0           0.119         0.214         0.067         0.829         0.0           0.111         0.217         0.062         0.829         0.0           0.103         0.208         0.053         0.764         0.0           0.096         0.192         0.070         0.755         0.0           0.087         0.201         0.070         0.755         0.0           0.081         0.202         0.068         0.811         0.0           0.063         0.209         0.068         0.760         0.0           0.052         0.208         0.083         0.772         0.0           0.047         0.212         0.071         0.758         0.0           0.042         0.219         0.072         0.744         0.0           0.033         0.202         0.084         0.744         0.0           0.033         0.202         0.084         0.741         0.0           0.021         0.212         0.84         0.727         0.0           0.022         0.214 <t< td=""><td>.120 0.061</td><td>0.017</td><td>189</td></t<> | .120 0.061                | 0.017           | 189                              |
| 0.131         0.205         0.071         0.814         0.0           0.119         0.214         0.067         0.829         0.0           0.103         0.208         0.053         0.764         0.0           0.096         0.192         0.070         0.755         0.0           0.087         0.201         0.070         0.755         0.0           0.081         0.202         0.066         0.811         0.0           0.075         0.220         0.068         0.811         0.0           0.063         0.202         0.068         0.760         0.0           0.052         0.203         0.881         0.760         0.0           0.047         0.212         0.071         0.758         0.0           0.052         0.203         0.883         0.772         0.0           0.042         0.219         0.727         0.734         0.0           0.033         0.202         0.884         0.744         0.0           0.021         0.212         0.84         0.741         0.0           0.022         0.212         0.84         0.727         0.0           0.021         0.216 <td< td=""><td>.056 0.022</td><td>0.086</td><td>92</td></td<> | .056 0.022                | 0.086           | 92                               |
| 0.119         0.214         0.067         0.829         0.0           0.111         0.217         0.062         0.825         0.0           0.006         0.193         0.778         0.744         0.0           0.007         0.070         0.755         0.0         0.0           0.0081         0.200         0.067         0.805         0.0           0.0069         0.202         0.066         0.800         0.0           0.063         0.202         0.068         0.760         0.0           0.052         0.208         0.083         0.772         0.0           0.052         0.208         0.083         0.772         0.0           0.047         0.212         0.071         0.758         0.0           0.042         0.219         0.072         0.784         0.0           0.042         0.219         0.072         0.731         0.0           0.033         0.203         0.084         0.762         0.0           0.042         0.212         0.084         0.762         0.0           0.033         0.203         0.080         0.727         0.0           0.024         0.217         <                                                   | .075 0.036                | 0.034           | 87                               |
| 0.111         0.217         0.062         0.825         0.0           0.009         0.0193         0.078         0.744         0.0           0.0087         0.201         0.070         0.755         0.0           0.0087         0.202         0.066         0.805         0.0           0.0075         0.202         0.066         0.801         0.0           0.069         0.208         0.093         0.811         0.0           0.063         0.209         0.068         0.760         0.0           0.052         0.208         0.083         0.772         0.0           0.047         0.212         0.071         0.758         0.0           0.042         0.219         0.072         0.784         0.0           0.033         0.203         0.084         0.742         0.0           0.042         0.219         0.072         0.731         0.0           0.033         0.203         0.084         0.762         0.0           0.033         0.203         0.084         0.762         0.0           0.021         0.212         0.084         0.761         0.0           0.021         0.214                                                         | .060 0.021                | 0.050           | 48                               |
| 0.103         0.208         0.053         0.764         0.0           0.0067         0.193         0.078         0.744         0.0           0.0087         0.201         0.070         0.755         0.0           0.0081         0.202         0.066         0.810         0.0           0.0053         0.220         0.066         0.810         0.0           0.063         0.209         0.068         0.760         0.0           0.052         0.208         0.033         0.772         0.0           0.047         0.212         0.071         0.758         0.0           0.042         0.212         0.071         0.758         0.0           0.042         0.212         0.071         0.758         0.0           0.042         0.212         0.072         0.731         0.0           0.033         0.203         0.803         0.727         0.0           0.028         0.209         0.72         0.731         0.0           0.021         0.216         0.91         0.789         0.0           0.017         0.217         0.86         0.767         0.0           0.004         0.218                                                            | .026 0.029                | 0.064           | 149                              |
| 0.096         0.193         0.078         0.744         0.0           0.087         0.201         0.070         0.755         0.0           0.081         0.207         0.867         0.805         0.0           0.069         0.220         0.066         0.810         0.0           0.063         0.209         0.068         0.760         0.0           0.058         0.218         0.068         0.760         0.0           0.052         0.208         0.83         0.772         0.0           0.047         0.212         0.071         0.758         0.0           0.042         0.219         0.072         0.784         0.0           0.033         0.201         0.84         0.731         0.0           0.042         0.212         0.71         0.731         0.0           0.033         0.202         0.80         0.727         0.0           0.042         0.219         0.78         0.760         0.0           0.025         0.212         0.84         0.762         0.0           0.021         0.216         0.91         0.783         0.0           0.013         0.217         0.76                                                       | .012 0.039                | 0.060           | 124                              |
| 0.087         0.201         0.070         0.755         0.0           0.084         0.207         0.887         0.805         0.0           0.075         0.220         0.066         0.810         0.0           0.069         0.208         0.093         0.811         0.0           0.063         0.209         0.068         0.760         0.0           0.052         0.208         0.83         0.772         0.0           0.047         0.212         0.071         0.758         0.0           0.042         0.219         0.72         0.784         0.0           0.043         0.201         0.84         0.734         0.0           0.033         0.202         0.80         0.727         0.0           0.033         0.203         0.80         0.727         0.0           0.025         0.212         0.84         0.762         0.0           0.021         0.216         0.91         0.789         0.0           0.017         0.217         0.86         0.766         0.0           0.013         0.218         0.92         0.733         0.0           0.014         0.218         0.92 </td <td>.049 0.056</td> <td>-0.001</td> <td>137</td>   | .049 0.056                | -0.001          | 137                              |
| 0.081         0.207         0.087         0.805         0.0           0.075         0.220         0.066         0.810         0.0           0.069         0.208         0.093         0.811         0.0           0.063         0.209         0.068         0.760         0.0           0.058         0.218         0.068         0.760         0.0           0.052         0.208         0.83         0.772         0.0           0.047         0.212         0.071         0.758         0.0           0.042         0.219         0.72         0.784         0.0           0.033         0.203         0.800         0.727         0.0           0.033         0.203         0.801         0.727         0.0           0.025         0.212         0.84         0.762         0.0           0.021         0.216         0.91         0.789         0.0           0.017         0.217         0.86         0.780         0.0           0.013         0.218         0.92         0.783         0.0           0.011         0.218         0.92         0.749         -0.           0.004         0.227         0.06                                                       | .110 0.006                | -0.020          | 168                              |
| 0.075         0.220         0.066         0.810         0.           0.069         0.208         0.093         0.811         0.           0.063         0.209         0.066         0.760         0.           0.058         0.218         0.068         0.786         0.           0.052         0.208         0.83         0.772         0.           0.047         0.212         0.071         0.758         0.           0.042         0.219         0.072         0.784         0.           0.033         0.203         0.800         0.727         0.           0.028         0.209         0.72         0.731         0.           0.021         0.216         0.91         0.789         0.           0.021         0.216         0.91         0.789         0.           0.017         0.217         0.86         0.780         0.           0.013         0.215         0.85         0.766         0.           0.004         0.218         0.92         0.783         0.           0.004         0.227         0.62         0.749         -0.           0.004         0.227         0.62         <                                                            | .076 0.021                | -0.010          | 34                               |
| 0.069         0.208         0.093         0.811         0.0           0.063         0.209         0.068         0.760         0.0           0.058         0.218         0.068         0.786         0.0           0.052         0.208         0.83         0.772         0.0           0.047         0.212         0.071         0.758         0.0           0.042         0.219         0.072         0.784         0.0           0.038         0.201         0.84         0.734         0.0           0.033         0.202         0.80         0.727         0.0           0.025         0.212         0.84         0.762         0.0           0.021         0.216         0.91         0.789         0.0           0.021         0.217         0.86         0.780         0.0           0.013         0.215         0.85         0.766         0.0           0.004         0.218         0.92         0.783         0.0           0.004         0.227         0.062         0.749         -0.           0.004         0.227         0.062         0.749         -0.           0.004         0.227         0.062                                                       | .052 -0.011               | 0.041           | 38                               |
| 0.063         0.209         0.068         0.760         0.0           0.058         0.218         0.068         0.786         0.0           0.052         0.208         0.083         0.772         0.0           0.047         0.212         0.071         0.758         0.0           0.042         0.219         0.072         0.784         0.0           0.038         0.201         0.84         0.734         0.0           0.033         0.202         0.072         0.731         0.0           0.025         0.212         0.84         0.762         0.0           0.021         0.216         0.991         0.789         0.0           0.017         0.217         0.86         0.760         0.0           0.013         0.215         0.85         0.766         0.0           0.004         0.218         0.92         0.783         0.0           0.004         0.227         0.62         0.749         -0.           0.004         0.227         0.62         0.749         -0.           0.004         0.227         0.62         0.749         -0.           0.004         0.227         0.62<                                                       | .000 0.029                | 0.046           | 60                               |
| 0.063         0.209         0.068         0.760         0.0           0.058         0.218         0.068         0.786         0.0           0.052         0.208         0.083         0.772         0.0           0.047         0.212         0.071         0.758         0.0           0.042         0.219         0.072         0.784         0.0           0.038         0.201         0.84         0.734         0.0           0.033         0.202         0.072         0.731         0.0           0.025         0.212         0.84         0.762         0.0           0.021         0.216         0.991         0.789         0.0           0.017         0.217         0.86         0.760         0.0           0.013         0.215         0.85         0.766         0.0           0.004         0.218         0.92         0.783         0.0           0.004         0.227         0.62         0.749         -0.           0.004         0.227         0.62         0.749         -0.           0.004         0.227         0.62         0.749         -0.           0.004         0.227         0.62<                                                       | .047 -0.024               | 0.046           | 136                              |
| 0.058         0.218         0.068         0.786         0.           0.052         0.208         0.083         0.772         0.           0.047         0.212         0.071         0.758         0.           0.042         0.219         0.072         0.784         0.           0.038         0.201         0.84         0.734         0.           0.033         0.203         0.800         0.727         0.           0.025         0.212         0.84         0.762         0.           0.021         0.216         0.991         0.789         0.           0.017         0.217         0.86         0.780         0.           0.017         0.217         0.86         0.780         0.           0.017         0.217         0.86         0.780         0.           0.011         0.218         0.92         0.783         0.           0.004         0.227         0.62         0.749         -0.           0.004         0.227         0.62         0.749         -0.           0.004         0.227         0.62         0.749         -0.           0.004         0.227         0.62                                                                     | .043 0.025                | -0.005          | 112                              |
| 0.052         0.208         0.083         0.772         0.           0.047         0.212         0.071         0.758         0.           0.042         0.219         0.072         0.784         0.           0.038         0.201         0.84         0.734         0.           0.033         0.203         0.800         0.727         0.           0.028         0.209         0.072         0.731         0.           0.025         0.212         0.84         0.762         0.           0.021         0.216         0.991         0.789         0.           0.017         0.217         0.86         0.780         0.           0.013         0.215         0.85         0.766         0.           0.004         0.218         0.92         0.783         0.           0.004         0.227         0.62         0.749         -0.           0.004         0.227         0.62         0.749         -0.           0.004         0.227         0.62         0.749         -0.           0.004         0.227         0.62         0.749         -0.           0.018         0.226         0.81                                                                    | .009 0.027                | 0.021           | 71                               |
| 0.047         0.212         0.071         0.758         0.           0.042         0.219         0.072         0.784         0.           0.038         0.201         0.84         0.734         0.           0.033         0.203         0.800         0.727         0.           0.028         0.209         0.072         0.731         0.           0.025         0.212         0.84         0.762         0.           0.021         0.216         0.91         0.789         0.           0.017         0.217         0.86         0.780         0.           0.017         0.217         0.86         0.780         0.           0.017         0.215         0.85         0.766         0.           0.013         0.218         0.092         0.783         0.           0.004         0.218         0.092         0.783         0.           0.004         0.227         0.62         0.749         -0.           0.004         0.227         0.62         0.749         -0.           0.004         0.228         0.818         0.711         0.           0.012         0.230         0.72                                                                     | .048 -0.004               | 0.008           | 57                               |
| 0.042         0.219         0.072         0.784         0.           0.038         0.201         0.084         0.734         0.           0.033         0.203         0.080         0.727         0.           0.028         0.209         0.072         0.731         0.           0.025         0.212         0.084         0.762         0.           0.021         0.216         0.091         0.789         0.           0.017         0.217         0.086         0.780         0.           0.013         0.215         0.085         0.766         0.           0.009         0.234         0.064         0.795         -0.           0.001         0.218         0.092         0.783         0.           0.001         0.218         0.092         0.783         0.           0.004         0.227         0.062         0.749         -0.           0.004         0.227         0.062         0.749         -0.           0.001         0.218         0.070         0.731         0.           0.012         0.230         0.72         0.741         0.           0.012         0.214         0.92                                                             | .034 0.020                | -0.007          | 130                              |
| 0.038         0.201         0.084         0.734         0.           0.033         0.203         0.080         0.727         0.           0.028         0.209         0.072         0.731         0.           0.025         0.212         0.84         0.762         0.           0.021         0.216         0.91         0.789         0.           0.017         0.217         0.86         0.780         0.           0.013         0.215         0.85         0.766         0.           0.004         0.218         0.092         0.783         0.           0.001         0.218         0.077         0.751         0.           0.004         0.227         0.062         0.749         -0.           -0.004         0.227         0.062         0.749         -0.           -0.012         0.230         0.072         0.714         -0.           -0.018         0.226         0.81         0.770         -0.           -0.033         0.213         0.106         0.753         0.           -0.043         0.239         0.52         0.742         -0.           -0.043         0.219         0.84 <td>.004 0.020</td> <td>0.019</td> <td>84</td>           | .004 0.020                | 0.019           | 84                               |
| 0.033         0.203         0.080         0.727         0.           0.028         0.209         0.072         0.731         0.           0.025         0.212         0.084         0.762         0.           0.021         0.216         0.91         0.789         0.           0.017         0.217         0.086         0.780         0.           0.013         0.215         0.085         0.766         0.           0.009         0.234         0.064         0.795         -0.           0.004         0.218         0.077         0.751         0.           0.004         0.218         0.072         0.749         -0.           -0.004         0.227         0.062         0.749         -0.           -0.012         0.230         0.72         0.741         -0.           -0.018         0.226         0.81         0.770         -0.           -0.022         0.214         0.087         0.731         -0.           -0.033         0.213         0.106         0.753         0.           -0.043         0.229         0.742         -0.         -0.           -0.043         0.219         0.8                                                       |                           |                 | 54                               |
| 0.028         0.209         0.072         0.731         0.           0.025         0.212         0.084         0.762         0.           0.021         0.216         0.091         0.789         0.           0.017         0.217         0.086         0.780         0.           0.013         0.215         0.085         0.766         0.           0.009         0.234         0.064         0.795         -0.           0.004         0.218         0.070         0.751         0.           0.004         0.218         0.077         0.751         0.           0.004         0.227         0.062         0.749         -0.           0.004         0.227         0.062         0.749         -0.           -0.010         0.208         0.108         0.761         0.           -0.012         0.230         0.72         0.774         -0.           -0.012         0.230         0.702         0.735         0.           -0.018         0.226         0.81         0.730         0.           -0.027         0.214         0.92         0.735         0.           -0.033         0.217         0.707                                                       | .075 -0.006               | -0.031          |                                  |
| 0.025         0.212         0.084         0.762         0.           0.021         0.216         0.091         0.789         0.           0.017         0.217         0.086         0.780         0.           0.013         0.215         0.085         0.766         0.           0.009         0.234         0.064         0.795         -0.           0.004         0.218         0.092         0.783         0.           0.004         0.218         0.077         0.751         0.           0.004         0.227         0.062         0.749         -0.           -0.004         0.227         0.062         0.749         -0.           -0.012         0.230         0.77         0.71         -0.           -0.012         0.230         0.702         0.774         -0.           -0.018         0.226         0.81         0.770         0.           -0.027         0.214         0.092         0.735         0.           -0.033         0.213         0.106         0.753         0.           -0.043         0.239         0.52         0.742         -0.           -0.048         0.217         0.                                                       | .067 0.003                | -0.038          | 51                               |
| 0.021         0.216         0.091         0.789         0.           0.017         0.217         0.086         0.780         0.           0.013         0.215         0.085         0.766         0.           0.009         0.234         0.064         0.795         -0.           0.004         0.218         0.922         0.783         0.           0.004         0.218         0.077         0.751         0.           0.004         0.227         0.062         0.749         -0.           -0.004         0.227         0.062         0.749         -0.           -0.012         0.230         0.072         0.774         -0.           -0.012         0.230         0.072         0.735         0.           -0.018         0.226         0.81         0.770         -0.           -0.027         0.214         0.092         0.735         0.           -0.033         0.213         0.106         0.753         0.           -0.043         0.239         0.52         0.742         -0.           -0.048         0.217         0.79         0.699         0.           -0.054         0.219                                                                | .044 0.018                | -0.034          | 213                              |
| 0.017         0.217         0.086         0.780         0.           0.013         0.215         0.085         0.766         0.           0.009         0.234         0.064         0.795         -0.           0.004         0.218         0.092         0.783         0.           0.004         0.218         0.077         0.751         0.           0.004         0.227         0.062         0.749         -0.           -0.004         0.227         0.062         0.749         -0.           -0.019         0.208         0.108         0.761         0.           -0.012         0.203         0.072         0.774         -0.           -0.012         0.204         0.081         0.770         -0.           -0.018         0.226         0.81         0.770         0.           -0.018         0.227         0.071         0.730         0.           -0.027         0.214         0.082         0.735         0.           -0.033         0.227         0.070         0.731         -0.           -0.043         0.239         0.52         0.742         -0.           -0.048         0.217         <                                                   | .032 -0.005               | -0.003          | 151                              |
| 0.013         0.215         0.085         0.766         0.           0.009         0.234         0.064         0.795         -0.           0.004         0.218         0.092         0.783         0.           0.004         0.218         0.077         0.751         0.           -0.004         0.227         0.062         0.749         -0.           -0.009         0.208         0.108         0.761         0.           -0.012         0.230         0.072         0.774         -0.           -0.018         0.226         0.81         0.700         -0.           -0.022         0.214         0.092         0.735         0.           -0.033         0.213         0.106         0.753         0.           -0.043         0.229         0.52         0.742         -0.           -0.043         0.239         0.52         0.742         -0.           -0.048         0.217         0.079         0.699         0.           -0.054         0.219         0.84         0.711         0.           -0.068         0.237         0.07         0.763         -0.           -0.068         0.237 <t< td=""><td>.016 -0.019</td><td>0.024</td><td>83</td></t<> | .016 -0.019               | 0.024           | 83                               |
| 0.009         0.234         0.064         0.795         -0.           0.004         0.218         0.092         0.783         0.           0.001         0.218         0.077         0.751         0.           -0.004         0.227         0.062         0.749         -0.           -0.009         0.208         0.108         0.761         0.           -0.012         0.230         0.072         0.774         -0.           -0.012         0.230         0.072         0.774         -0.           -0.012         0.214         0.087         0.730         0.           -0.022         0.214         0.087         0.730         0.           -0.033         0.213         0.106         0.753         0.           -0.043         0.239         0.52         0.742         -0.           -0.048         0.217         0.079         0.699         0.           -0.054         0.219         0.84         0.711         0.           -0.068         0.237         0.070         0.763         -0.           -0.075         0.219         0.992         0.705         0.           -0.082         0.237                                                           | .012 -0.010               | 0.015           | 39                               |
| 0.004         0.218         0.092         0.783         0.           0.001         0.218         0.077         0.751         0.           -0.004         0.227         0.062         0.749         -0.           -0.009         0.208         0.108         0.761         0.           -0.012         0.230         0.072         0.774         -0.           -0.012         0.230         0.072         0.774         -0.           -0.012         0.230         0.072         0.774         -0.           -0.012         0.214         0.087         0.730         0.           -0.022         0.214         0.922         0.735         0.           -0.033         0.213         0.106         0.753         0.           -0.043         0.239         0.52         0.742         -0.           -0.048         0.217         0.079         0.699         0.           -0.054         0.219         0.84         0.711         0.           -0.068         0.237         0.77         0.763         -0.           -0.075         0.219         0.992         0.705         0.           -0.082         0.237                                                           | .018 -0.007               | 0.001           | 42                               |
| 0.001         0.218         0.077         0.751         0.779           -0.004         0.227         0.062         0.749         -0.           -0.009         0.208         0.108         0.761         0.           -0.012         0.203         0.072         0.749         -0.           -0.012         0.203         0.072         0.774         -0.           -0.018         0.226         0.81         0.700         -0.           -0.022         0.214         0.087         0.730         0.           -0.023         0.213         0.106         0.753         0.           -0.033         0.213         0.106         0.731         -0.           -0.043         0.227         0.070         0.731         -0.           -0.048         0.217         0.79         0.699         0.           -0.048         0.217         0.79         0.699         0.           -0.054         0.219         0.84         0.711         0.           -0.068         0.237         0.77         0.763         -0.           -0.075         0.219         0.992         0.705         0.           -0.082         0.237                                                        | .056 0.034                | 0.031           | 36                               |
| -0.004         0.227         0.062         0.749         -0.           -0.009         0.208         0.108         0.761         0.           -0.012         0.230         0.072         0.774         -0.           -0.018         0.226         0.81         0.770         -0.           -0.022         0.214         0.087         0.730         0.           -0.023         0.213         0.106         0.753         0.           -0.024         0.239         0.052         0.742         -0.           -0.033         0.213         0.106         0.753         0.           -0.048         0.227         0.070         0.741         -0.           -0.048         0.217         0.079         0.699         0.           -0.054         0.237         0.77         0.763         -0.           -0.060         0.237         0.071         0.763         -0.           -0.068         0.231         0.069         0.711         0.           -0.075         0.219         0.92         0.705         0.           -0.075         0.219         0.92         0.705         0.           -0.082         0.237                                                         | .008 -0.021               | 0.018           | 72                               |
| -0.009         0.208         0.108         0.761         0.774           -0.012         0.230         0.072         0.774         -0.           -0.018         0.226         0.81         0.770         -0.           -0.022         0.214         0.87         0.730         0.           -0.022         0.214         0.92         0.735         0.           -0.027         0.214         0.92         0.735         0.           -0.033         0.213         0.106         0.753         0.           -0.038         0.227         0.70         0.731         -0.           -0.043         0.239         0.052         0.742         -0.           -0.048         0.217         0.709         0.699         0.           -0.054         0.237         0.77         0.763         -0.           -0.068         0.231         0.069         0.716         -0.           -0.068         0.231         0.069         0.733         -0.           -0.075         0.219         0.92         0.705         0.           -0.082         0.237         0.74         0.733         -0.           -0.090         0.238                                                         | .007 0.007                | -0.014          | 44                               |
| -0.012         0.230         0.072         0.774         -0.           -0.018         0.226         0.081         0.770         -0.           -0.022         0.214         0.087         0.730         0.           -0.027         0.214         0.092         0.735         0.           -0.033         0.213         0.106         0.753         0.           -0.038         0.227         0.070         0.731         -0.           -0.043         0.239         0.052         0.742         -0.           -0.048         0.217         0.079         0.699         0.           -0.048         0.217         0.079         0.699         0.           -0.054         0.219         0.84         0.711         0.           -0.068         0.231         0.069         0.763         -0.           -0.068         0.231         0.069         0.716         -0.           -0.075         0.219         0.92         0.705         0.           -0.082         0.237         0.74         0.733         -0.           -0.99         0.238         0.85         0.752         -0.           -0.99         0.260                                                          | .026 0.038                | -0.016          | 201                              |
| -0.018         0.226         0.081         0.770         -0.           -0.022         0.214         0.087         0.730         0.           -0.027         0.214         0.092         0.735         0.           -0.033         0.213         0.106         0.753         0.           -0.038         0.227         0.070         0.731         -0.           -0.043         0.239         0.052         0.742         -0.           -0.043         0.219         0.070         0.699         0.           -0.048         0.217         0.079         0.699         0.           -0.054         0.219         0.084         0.711         0.           -0.068         0.237         0.077         0.763         -0.           -0.068         0.237         0.074         0.733         -0.           -0.075         0.219         0.092         0.705         0.           -0.082         0.237         0.074         0.733         -0.           -0.090         0.238         0.855         0.752         -0.           -0.099         0.260         0.049         0.734         -0.                                                                                   | .049 -0.054               | -0.003          | 28                               |
| -0.022         0.214         0.087         0.730         0.           -0.027         0.214         0.092         0.735         0.           -0.033         0.213         0.106         0.753         0.           -0.038         0.227         0.070         0.731         -0.           -0.043         0.239         0.052         0.742         -0.           -0.048         0.217         0.079         0.699         0.           -0.054         0.219         0.084         0.711         0.           -0.068         0.237         0.077         0.763         -0.           -0.068         0.237         0.074         0.733         -0.           -0.068         0.237         0.074         0.733         -0.           -0.075         0.219         0.092         0.705         0.           -0.082         0.237         0.074         0.733         -0.           -0.090         0.238         0.85         0.752         -0.           -0.099         0.260         0.049         0.734         -0.                                                                                                                                                          | .040 0.019                | 0.009           | 73                               |
| -0.027         0.214         0.092         0.735         0.           -0.033         0.213         0.106         0.753         0.           -0.038         0.227         0.070         0.731         -0.           -0.043         0.239         0.052         0.742         -0.           -0.048         0.217         0.079         0.699         0.           -0.054         0.219         0.84         0.711         0.           -0.068         0.237         0.077         0.763         -0.           -0.068         0.231         0.069         0.716         -0.           -0.075         0.219         0.992         0.705         0.           -0.082         0.237         0.074         0.733         -0.           -0.099         0.238         0.85         0.752         -0.           -0.099         0.260         0.049         0.738         -0.           -0.110         0.246         0.070         0.734         -0.                                                                                                                                                                                                                                 | .023 -0.000               | 0.006           | 47                               |
| -0.033         0.213         0.106         0.753         0.701           -0.038         0.227         0.070         0.731         -0.           -0.043         0.239         0.052         0.742         -0.           -0.048         0.217         0.079         0.699         0.           -0.054         0.219         0.084         0.711         0.           -0.060         0.237         0.077         0.763         -0.           -0.068         0.231         0.069         0.716         -0.           -0.075         0.219         0.92         0.705         0.0           -0.075         0.219         0.092         0.705         0.           -0.082         0.237         0.074         0.733         -0.           -0.090         0.238         0.855         0.752         -0.           -0.099         0.260         0.049         0.738         -0.           -0.110         0.246         0.070         0.734         -0.                                                                                                                                                                                                                            | .025 -0.012               | -0.035          | 47                               |
| -0.038         0.227         0.070         0.731         -0.           -0.043         0.239         0.052         0.742         -0.           -0.048         0.217         0.079         0.699         0.           -0.054         0.219         0.084         0.711         0.           -0.060         0.237         0.077         0.763         -0.           -0.068         0.231         0.069         0.716         -0.           -0.075         0.219         0.92         0.705         0.0           -0.082         0.237         0.074         0.733         -0.           -0.090         0.238         0.85         0.752         -0.           -0.099         0.260         0.049         0.758         -0.           -0.110         0.246         0.070         0.734         -0.                                                                                                                                                                                                                                                                                                                                                                            | .025 -0.022               | -0.030          | 277                              |
| -0.043         0.239         0.052         0.742         -0.           -0.048         0.217         0.079         0.699         0.           -0.054         0.219         0.084         0.711         0.           -0.060         0.237         0.077         0.763         -0.           -0.068         0.231         0.069         0.716         -0.           -0.075         0.219         0.092         0.705         0.           -0.082         0.237         0.074         0.733         -0.           -0.090         0.238         0.085         0.752         -0.           -0.099         0.260         0.049         0.758         -0.           -0.110         0.246         0.070         0.734         -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .029 -0.051               | -0.011          | 84                               |
| -0.048         0.217         0.079         0.699         0.           -0.054         0.219         0.084         0.711         0.           -0.060         0.237         0.077         0.763         -0.           -0.068         0.231         0.069         0.716         -0.           -0.075         0.219         0.092         0.705         0.           -0.082         0.237         0.074         0.733         -0.           -0.090         0.238         0.085         0.752         -0.           -0.099         0.260         0.049         0.758         -0.           -0.110         0.246         0.070         0.734         -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .027 0.023                | -0.034          | 108                              |
| -0.054         0.219         0.084         0.711         0.0           -0.060         0.237         0.077         0.763         -0.           -0.068         0.231         0.069         0.716         -0.           -0.075         0.219         0.092         0.705         0.           -0.082         0.237         0.074         0.733         -0.           -0.090         0.238         0.085         0.752         -0.           -0.099         0.260         0.049         0.758         -0.           -0.110         0.246         0.070         0.734         -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .077 0.058                | -0.023          | 217                              |
| -0.060         0.237         0.077         0.763         -0.           -0.068         0.231         0.069         0.716         -0.           -0.075         0.219         0.092         0.705         0.           -0.082         0.237         0.074         0.733         -0.           -0.090         0.238         0.085         0.752         -0.           -0.099         0.260         0.049         0.738         -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .014 0.004                | -0.066          | 102                              |
| -0.068         0.231         0.069         0.716         -0.           -0.075         0.219         0.092         0.705         0.           -0.082         0.237         0.074         0.733         -0.           -0.090         0.238         0.085         0.752         -0.           -0.099         0.260         0.049         0.758         -0.           -0.110         0.246         0.070         0.734         -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .005 -0.006               | -0.053          | 42                               |
| -0.075         0.219         0.092         0.705         0.           -0.082         0.237         0.074         0.733         -0.           -0.090         0.238         0.085         0.752         -0.           -0.099         0.260         0.049         0.758         -0.           -0.110         0.246         0.070         0.734         -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .066 0.008                | -0.002          | 132                              |
| -0.082         0.237         0.074         0.733         -0.           -0.090         0.238         0.085         0.752         -0.           -0.099         0.260         0.049         0.758         -0.           -0.110         0.246         0.070         0.734         -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .044 0.025                | -0.049          | 109                              |
| -0.082         0.237         0.074         0.733         -0.           -0.090         0.238         0.085         0.752         -0.           -0.099         0.260         0.049         0.758         -0.           -0.110         0.246         0.070         0.734         -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .006 -0.022               | -0.059          | 72                               |
| -0.090         0.238         0.085         0.752         -0.           -0.099         0.260         0.049         0.758         -0.           -0.110         0.246         0.070         0.734         -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .066 0.015                | -0.031          | 80                               |
| -0.099         0.260         0.049         0.758         -0.           -0.110         0.246         0.070         0.734         -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .070 -0.008               | -0.012          | 29                               |
| -0.110 0.246 0.070 0.734 -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .158 0.065                | -0.006          | 204                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .102 0.022                | -0.031          | 51                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .062 -0.008               | -0.052          | 112                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .080 0.026                | -0.081          | 243                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .048 -0.051               | -0.053          | 94                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .134 -0.034               | -0.015          | 139                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .137 -0.007               | -0.042          | 54                               |

#### COLOR KEY

Green: Score in best (dark) or second best (light) quintiles Red: Sscore in worst (dark) or second worst (light) quintiles

To create the sample, hospitals were first ranked by composite score. Starting with the highest score, the 25th hospital and every 50th hospital after that were selected.

#### **Changes in Rates Sufficient to Move Hospitals to Neighboring Quintile Categories**

#### Supplemental Analysis for NQF Review of Care Transitions Composite Measure

#### 2/23/2010

A question arising from the previous table is how much each hospital's performance on its measures would have to change for the hospital to move to some neighboring quintile category. In order to provide an answer to this question, we selected five hospitals with combination scores in the middle of each of the quintile examples (denoting them as hospitals A, B, C, D, and E) and calculated how much each of their measures would have to alter to move the hospital to another quintile (obviously, hospital A in the top quintile could not move up and hospital E in the bottom quintile could not move down, but otherwise the hospitals could move either up or down, if their performance on a measure or group of measures changed sufficiently).

Table 1 gives the individual measures for the five hospitals selected for illustration.

| Table 1. Rates and Quintile Category for Example Hospitals |                  |          |           |          |  |  |  |
|------------------------------------------------------------|------------------|----------|-----------|----------|--|--|--|
| Hospital                                                   | Readmission rate | ED rate  | E&M rate  | Quintile |  |  |  |
|                                                            | (µ=22.0%)        | (µ=8.1%) | (µ=76.5%) | Category |  |  |  |
| А                                                          | 21.4%            | 6.7%     | 82.9%     | 5 star   |  |  |  |
| В                                                          | 20.8%            | 8.3%     | 77.2%     | 4 star   |  |  |  |
| С                                                          | 23.4%            | 6.4%     | 79.5%     | 3 star   |  |  |  |
| D                                                          | 22.7%            | 7.0%     | 73.1%     | 2 star   |  |  |  |
| Е                                                          | 24.6%            | 7.0%     | 73.4%     | 1 star   |  |  |  |

 Table 1: Rates and Quintile Category for Example Hospitals

We should note that the quintile categories of these example hospitals do not align with any individual measure, including the readmission rate which has the highest weight and makes the largest individual contribution. Each hospital's combined overall score and resulting quintile category is a function of all individual measures and not overly dependent on any single one. Even the E&M measure, which has a weight only <sup>1</sup>/<sub>4</sub> as large as the readmission rate makes an important contribution to the overall score, no doubt due to its large variation.

### **Change in Readmission Rate**

Table 2 lists each hospital's observed readmission rate and indicates how much of a change in rate would be needed to move the hospital into an adjacent quintile. The table indicates that reasonably small changes in readmission rates by hospitals (i.e., from .4% to 1.0%) would facilitate a move into a higher or lower quintile category. Of the eight example scenarios, only one - hospital B's lowering its readmission rate by .7% to 20.1% - would result in a readmission rate outside the current range formed by all five hospitals. This indicates how sensitive the quintile ranking might be to an individual measure and

how a reasonably small change might be enough to move the hospital either up or down one ranking.

|          | Tuble 2. Changes in Readingston Rate Sufficient to Rove Hospitals |          |                |                |  |  |  |  |
|----------|-------------------------------------------------------------------|----------|----------------|----------------|--|--|--|--|
| Hospital | Readmission rate                                                  | Current  | Change to move | Change to move |  |  |  |  |
|          | (µ=22.0%)                                                         | Category | up to higher   | down to lower  |  |  |  |  |
|          |                                                                   |          | quintile       | quintile       |  |  |  |  |
| А        | 21.4%                                                             | 5 star   |                | 1.0%           |  |  |  |  |
| В        | 20.8%                                                             | 4 star   | -0.7%          | 0.6%           |  |  |  |  |
| С        | 23.4%                                                             | 3 star   | -0.4%          | 0.7%           |  |  |  |  |
| D        | 22.7%                                                             | 2 star   | -0.6%          | 0.8%           |  |  |  |  |
| Е        | 24.6%                                                             | 1 star   | -1.0%          |                |  |  |  |  |

Table 2: Changes in Readmission Rate Sufficient to Move Hospitals

#### **Change in Emergency Department Rate**

Table 3 similarly lists each hospital's observed rate of ambulatory visits to emergency departments and the changes needed to move hospitals to another quintile. The table shows that the changes in ED visit rates prompting such moves would have to be significantly larger (i.e. from .8% to 2.0%), and that in many cases the resulting ED rates would be outside the current range of 6.4% to 8.3%. Due to their lower values and a corresponding smaller variation, the ED measures produce a smaller, albeit still important impact on quintile rankings.

| Hospital | Emergency       | Current  | Change to move | Change to move |
|----------|-----------------|----------|----------------|----------------|
| Hospital |                 |          | e              | e              |
|          | Department rate | Category | up to higher   | down to lower  |
|          | (µ=8.1%)        |          | quintile       | quintile       |
| А        | 6.7%            | 5 star   |                | 1.9%           |
| В        | 8.3%            | 4 star   | -1.3%          | 1.3%           |
| С        | 6.4%            | 3 star   | -0.8%          | 1.2%           |
| D        | 7.0%            | 2 star   | -1.2%          | 1.6%           |
| Е        | 7.0%            | 1 star   | -2.0%          |                |

**Table 3: Changes in Emergency Department Rate Sufficient to Move Hospitals** 

### Change in E&M Rate

Table 4 lists the change in E&M rates needed to move our five example hospitals to neighboring quintiles. It should be noted that because of the way the overall measure is constructed, the sign on the needed changes will be reversed from what they were for ED and readmission rates. Table 4 indicates that changes in E&M rates leading to quintile moves are larger still from any seen before (i.e. from 1.7% to 4.0%). However, because of the large variation in original E&M rates, the resulting rates would still, for the most part, lie within the original range of rates (the one exception is the rate hospital D would need to move it down into the lowest quintile). Obviously, such hypothetical rates would

be feasible and we may conclude that combined, overall scores will be sensitive to their E&M component.

| Hospital | E&M rate  | Current  | Change to move | Change to move |  |  |  |
|----------|-----------|----------|----------------|----------------|--|--|--|
|          | (µ=76.5%) | Category | up to higher   | down to lower  |  |  |  |
|          |           |          | quintile       | quintile       |  |  |  |
| А        | 82.9%     | 5 star   |                | -3.9%          |  |  |  |
| В        | 77.2%     | 4 star   | 2.6%           | -2.5%          |  |  |  |
| С        | 79.5%     | 3 star   | 1.7%           | -2.4%          |  |  |  |
| D        | 73.1%     | 2 star   | 2.4%           | -3.2%          |  |  |  |
| Е        | 73.4%     | 1 star   | 4.0%           |                |  |  |  |

Table 4: Changes in E&M Rate Sufficient to Move Hospitals